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● X-ray scattering principles

● SAXS observable I(q)

● SAXS interpretables

● SAXS tutorial
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Beam line 12.3.1 setup (ALS)
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Sample interactions with X-rays



  

Zuo, X (NCI); Grishaev, A. (NIDDK) (2009, Part 1)

q: magnitude of momentum transfer to incident X-ray photon

Incident X-ray photon momentum
p = h / λ h = Planck's const



  

q: magnitude of momentum transfer to incident X-ray photon

Incident X-ray photon momentum
p = h / λ h = Planck's const

● q is increased by increasing incident photon momentum p (decreasing λ) and/or increasing 
angle of deflection up to 2θ=180º



  

● X-ray crystallography exploits repeating unit of the 
crystal

● Incident photons scatter (“reflect”), interfere and are 
detected

● Crystal lattice structure permits coherent 
interference to yield well-defined maxima

Crystals diffract and solution-particles scatter

Putnam, et al. (2007)



  

● X-ray crystallography exploits repeating unit of the 
crystal

● Incident photons scatter (“reflect”), interfere and are 
detected

● Crystal lattice structure permits coherent 
interference to yield well-defined maxima

● X-ray solution scattering has a disordered 
arrangement of particles

● Incident photons scatter but phase is incoherent 
and therefore interference is not quantized

● Therefore, radially averaged scattering profile (1D) 
is obtained

● Buffer scattering must be subtracted

Crystals diffract and solution-particles scatter

Putnam, et al. (2007)



  

SAXS I(q) reflects particle shape and size

Zuo, X (NCI); Grishaev, A. (NIDDK); Wang, J (NCI) (2009, Part 2)

ALS BL 12.3.1 (our data)

d = 2π/q (Å)

Zuo, X (NCI); Grishaev, A. (NIDDK); Wang, J (NCI) (2009, Part 2)



  

SAXS I(q) reflects particle shape and size

Svergun & Koch (2003)



  

Pair distribution function P(r)

● P(r) quantifies how well the electron density in the 3D structure 
“knows” its spatially-proximal density over space

● Characterized by the length over which the electron density is 
changed from current value

● This is a radially-averaged electron density auto-correlation function

● It depends only on the magnitude of the distance |r| and not the 
orientation



  

SAXS P(r) reflects particle shape

Svergun & Koch (2003)



  

SAXS I(q) and P(r) inter-converted via FT

Svergun & Koch (2003)

Fourier 
transform

Momentum domain (/nm or /Å)
Intensity of scatter at given momentum

Position domain (nm or Å)
“Recollection” of position throughout space



  

NMR correlation function and spectral density inter-converted via FT

Rule & Hitchens

Frequency domain (/sec)
Intensity of motion at given frequency

Time domain (sec)
“Recollection” of position throughout time

Fourier 
transform



  

SAXS P(r) and NMR C
I
(τ) are somewhat* analogous

● NMR correlation function quantifies how well the bond vector “knows” 
its temporally-proximal (recent) orientation over time

● Characterized by the time over which the bond vector is changed 
from current orientation

C I  = 〈 P2u 0°u  〉
u = N­H Bond vector

C I  = S2  1−S2e−/e



  

SAXS P(r) and NMR C
I
(τ) are somewhat* analogous

● NMR correlation function quantifies how well the bond vector “knows” 
its temporally-proximal (recent) orientation over time

● Characterized by the time over which the bond vector is changed 
from current orientation

● SAXS pair-distribution function quantifies how well the electron 
density “knows” its spatially-proximal density over space

● Characterized by the length over which the
electron density is changed from current value

C I  = 〈 P2u 0°u  〉
u = N­H Bond vector

C I  = S2  1−S2e−/e

*Since P(r) is radially averaged, only the magnitude of distance |r| is important. This would be akin to the NMR 
correlation function using only the magnitude of time |t| representing both prior and future orientations of the 
bond-vector



  

Putnam, et al. (2007)
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SAXS interpretables are numerous and redundant

● There are many ways to compute these interpretables
● Estimates of accuracy are sometimes ill-defined

● Therefore it is important to seek consistency
● E.g., R

G
 from Guinier should agree with R

G
 from P(r)

● Discrepancies may indicate a flawed interpretation
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Zuo, X (NCI); Grishaev, A. (NIDDK); Wang, J (NCI) (2009, Part 2)

Radius of gyration R
G
 is not radius of particle
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Radius of gyration R
G
 is not radius of particle



  

Putnam, et al. (2007)
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Putnam, et al. (2007)
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