Radiation-Hard/High-Speed Parallel Optical Links

The Ohio State University

P. Buchholz, M. Ziolkowski
Universität Siegen

August 16, 2013
Outline

- Introduction to a compact solution
- Results with 5 Gb/s VCSEL array driver
- Preliminary Design of 10 Gb/s VCSEL array driver
- Summary
Use of VCSEL Arrays in HEP

- Widely used in off-detector (no radiation) data transmission
- First on-detector implementation in pixel detector of ATLAS
 - experience has been positive
 - VCSELs used are humidity sensitive but they are installed in very low humidity location
 - modern VCSELs are humidity tolerant
 - opto-links built by OSU have ~0.1% broken links
 - will use arrays for next pixel detector upgrade (IBL)
New Parallel Optical Engine

- Improved design for new pixel layer of ATLAS
 - use 12-channel VCSEL and PIN arrays
 - 36 optical channels

![Image of optical components]

- 3 cm
- VCSEL opto-pack
- PIN opto-pack
- MPO connector
New 12-Channel VCSEL Driver

- New ASIC designed using 130 nm CMOS
- Incorporate improvements taking advantage of experience from 1st generation parallel optical engine:
 - ✔ redundancy to bypass a broken VCSEL
 - ■ special thanks to FE-I4 group (Roberto Beccherle et al.) for command decoder circuit
 - ✔ power-on reset in case of communication failure:
 - ✔ no signal steering
 - ✔ 10 mA modulation current (on current)
 - ✔ 1 mA bias current (off current)
- Will only operate at 160 Mb/s for new pixel layer but designed ASIC to operate at much higher speed (5 Gb/s) to gain experience in designing high-speed parallel driver
New VCSEL Array Driver

- Only inner 8 channels connected to new pixel modules
 - future driver could reserve only one channel for redundancy

4.5 mm crosspoint switch
High-Speed Test Configuration

10 Gb/s ULM VCSEL array
VCSEL array driver
MPO connector
Optical Eye Diagram

- optical eye diagram @ 5 Gb/s is quite acceptable
 - special thanks to Alan Prosser @ Fermilab for use of equipment
SFP+ as Optical Probe

- **7 Gb/s BERT**
- **13 GHz Oscilloscope**
- **Finisar 10 Gb/s Small Form Factor (SFP+) Transceiver**
- **VCSEL array driver**
- **Channel under test**

Diagram details include:
- SFP+ as optical probe connection points
- 7 Gb/s BERT input
- 13 GHz Oscilloscope input
- VCSEL array driver output
- Channel under test connection
- Finisar 10 Gb/s Small Form Factor (SFP+) Transceiver output
Optical Probe vs. SFP+

- SFP+ cleans up the eye by slightly improving the rise/fall times
Eye with One/All Channels Active

- all channels work @ 5 Gb/s with bit error rate < 5×10^{-13} for all channels active
- jitter increases with all channels active but still passes the mask test
Effect of Steering on Eye

Receiving LVDS signal from channel 8, steering to VCSEL spare 1

LVDS in channel 8
Effect of Steering on Eye

- Steered channel still passes the mask test
- Jitter increases with all channels active
Optical Eye Diagram of Steered Signal

- optical eye diagram of steered signal @ 5 Gb/s is quite acceptable
Radiation Hardness

- 10 Gb/s VCSEL arrays have been proven to be radiation hard to tens of Mrad
 - send signal on ~1 m micro co-ax cables to less radiation and more serviceable location

- VCSEL array drivers + ULM 10 Gb/s VCSELs were irradiated with 24 GeV protons at CERN last August to 1.51×10^{15} protons/cm2 (33 Mrad in GaAs)
 - Preliminary tests show problems operating at 5 Gb/s unless VDD increased (4 Gb/s is fine)
 - Suspect VCSEL damage (threshold shifts) to be the cause of reduced speed
 - need to confirm this with a separate irradiation
10 Gb/s VCSEL Driver (130 nm)

- 10 Gb/s transmission needed for ATLAS inner pixel layer and LAr readout upgrades
 - joint ATLAS/CMS proposal funded via US DOE generic R&D program
 - preliminary work indicates that we can achieve 10 Gb/s in 130 nm CMOS
 - have a working layout but would like to optimize further
10 Gb/s VCSEL Driver Layout
10 Gb/s VCSEL Driver

simulation of extracted layout of driver stage with parasitics of bond pads and proven version of VCSEL model
Future Plan

● planning to port design to 65 nm CMOS
 ■ recently signed non-disclosure agreement (NDA) with TSMC
 ■ plan for 4-channel prototype submission by end of this year
● recommended for funding of MRI proposal (OSU+SMU) to NSF
 ■ OSU will acquire high-speed, modern equipment
to replace equipment acquired with previous MRI in 2003
 ■ special thanks to NSF for enabling US to continue
the leading role in the optical link R&D and fabrication
Summary

- VCSEL array offers compact solution to data transmission
- 5 Gb/s VCSEL array driver successfully prototyped
- Currently designing 10 Gb/s VCSEL array driver