Status of Opto-Board Production/Postmortem

The Ohio State University
P. Buchholz, M. Ziolkowski
Universität Siegen

June 12, 2013
Outline

● Status of opto-board production
● Results of opto-board postmortem
● Summary
Introduction

- 3 opto-board flavors
 - nSQP D opto-board (disk, L1, L2): 7 TTC + 14 data links
 - nSQP B opto-board (B-layer): 7 TTC + 14 data links
 - IBL opto-board: 8 TTC + 16 data links
Opto-Pack Enforcement

- Several opto-packs detached at various stages of production
 - detailed investigations + discussion with epoxy vendor
 - no obvious causes of failure found
 - two improvements:
 - scoring of PCB surface to improve adhesion
 - add aluminum brace to greatly increase epoxy contact area
 - cannot remove opto-pack without destroying opto-pack
Wire Bonding

- Bond pads on ASICs are not designed for double bonds
 - previous opto-boards used double bonds
 - double bonding was difficult with K&S 1470 but doable
- Use K&S 8060 for new opto-boards
 - double bonding is very challenging and
 needs significant more programming development
 ⇨ use single bonds
Second PCB Vendor

- Exception (UK) is the second PCB vendor
 - 25 PCB delivered
 - 2 PCB delaminated
 - 1 PCB delaminated during solder paste reflow
 - Use PCBs from Cirexx (US) which delivered high-quality PCB
Production Status

- 22 D opto-boards have passed QA
 - 7 boards with optical epoxy on PIN arrays and no opto-pack re-enforcement
 - 9 boards without opto-pack re-enforcement
 - 6 boards with final configuration
- 2 opto-boards failed QA due to bad duty cycle
 - duty cycle will be checked before QA in order to stack a second layer of ASIC
 ⇒ board will be classified as 2nd class
- B opto-boards with mounted passive components will be delivered next Wednesday
- IBL opto-boards will be fabricated after B boards
Opto-Board Optical Power

- Excellent optical power!!!
Reception Test System

- Reception test system is now operational at SR1
 - use to retest delivered IBL, D and B boards
 - also use in the old opto-board postmortem
 - 16 D boards passed reception test
What to Expect on Old Opto-boards

- 54 failed modules are attributed to opto-link problems based on a calculation
 - including three totally failed opto-boards
Verification of Extraction Procedure

- Extraction procedure tested on service panel A12
 - visual inspection revealed that all opto-boards were well secured
 ⇒ no sign of loose connection in causing an opto-link to fail
- 36 opto-boards on A12:
 - all boards extracted and tested
 - 1 out of ~252 channels non functional (DORIC) as expected
 ⇒ extraction procedure does not induce additional damage
 ⇒ will only test problematic boards for other service panels
Failure Classification

- 7 opto-boards have a broken DORIC reset line on chip 2
 - reset line is routed from chip 1 to 2 but it carries little current
 - unclear why failure occurs on chip 2 only
 - 3-4 modules are connected to chip 2
 - some modules can still be operated if DORIC can lock in
 ⇔ ~10 modules are operational at one time
- 16 VCSELs and 6 PINs are non operational
 - include 1 dead VCSEL
 - one module connected to both disconnected VCSEL/PIN
 - 15 VCSELs are connected to modules
 - caused by cold solder joints
 ⇔ 20 modules non operational
- 54 module failures were predicted to be caused by opto failures
- probably no wire bond failures since there were no random failures
Summary

- opto-pack re-enforced to increase adhesion
- will use single wire bonds
- PCB from second vendor not acceptable
- opto-board production has started with 7% produced
- opto-board postmortem reveals:
 - no dead opto-boards
 - probably no random (wire bond) failures
 - failure on chip 2 reset line not understood
 - cause ~10 modules non operational at a given time
 - 20 modules connected to disconnected/dead VCSEL or PIN