Status of On-Detector Opto-Links

K.K. Gan, H. Kagan, R.D. Kass,
J. Moore, D. Pignotti, S. Smith
The Ohio State University

P. Buchholz, A. Wiese, M. Ziolkowski
Universität Siegen

October 12, 2012
Outline

- Results on prototype opto-boards
- Status of accelerated lifetime test
- Plan/summary
Opto-Board Flavors

- 3 opto-board flavors
 - nSQP D opto-board (disk): 7 TTC + 14 data links
 - nSQP B opto-board (B-layer): 7 TTC + 14 data links
 - IBL opto-board: 8 TTC + 16 data links
- very similar design for IBL and nSQP opto-boards
 ⇒ IBL opto-board R&D benefits greatly from that for nSQP
Status of IBL Opto-Board Prototyping

- One IBL opto-board fabricated
 - pass go/no go
 - pass QA after burn-in and thermal cycle
- Building 9 more for system test distribution
IBL Opto-Board Optical Power

- Excellent optical power!!!

Need optical connector mounting jig
Status of nSQP Opto-Board Prototyping

- four nSQP B opto-boards distributed: CERN, SLAC, Wuppertal, Bern
- One nSQP D opto-board fabricated
 - pass go/no go
 - wirebond failures after thermal cycling on DTO2 VDC to opto-pack
 - optimization of wire bond parameters in progress
D Opto-Board Optical Power

- Excellent optical power but two channels failed

Failed channels

K.K. Gan

IBL General Meeting
D Opto-Board Fabrication Problems

- VVDC/GND shorts on 6 of the 25 boards
 - shorts removable by high current/mechanical scraping
 - caused by problems with large hole drilling

- Problems at passive assembly house caused by misalignment between the copper plate holes and PCB holes
 - the connector would not sit flat
 - should drill bigger holes on copper plate
Accelerated Lifetime Test

- VCSEL array mounted on opto-pack should survive at least 1,000 hours at 85°C and 85% humidity
 - to qualify two vendors: ULM and Finisar
- IBL GM, June 2012:
 - 20 ULM arrays survived to 1,000 hours
 - analysis of failed arrays after 1,000 hours
 - scrapping of optical epoxy wicked up guide pins might cause mechanical stress
 ⇒ use dam for epoxy containment
Finisar Accelerated Lifetime Test Fiasco

- Sept 2011:
 - loaded 20 VCSEL arrays
 - 16 exhibit high common serial resistance after a few hours
 - manufacture data on wafer shows a possible related problem
 - vendor replaced the arrays at no cost

- Feb 2012:
 - loaded 20 VCSEL arrays
 - expired wirebond encapsulant turns black and eats bonds
 - all samples fail

- July 2012:
 - loaded 5 VCSEL arrays with dams for optical epoxy containment
 - environmental chamber breaks due to failed fan
 - rain inside oven
 - all samples ruined
More Accelerated Lifetime Test

- Sept 2012:
 - loaded 20 VCSEL arrays
 - fibers inserted during test to exert connector spring force
 - after 50 hours: channels on 4 arrays failed
 - after 250 hours: channels on 10 additional arrays failed
Postmortem

- Microscopic analysis shows 6 of the failed arrays have indentations in the optical epoxy
 - similar to those on several recently failed TX VCSELs
 - unfortunately no such indentations on other 8 failed arrays

Failed OSU opto-pack

Failed TX
Latest Accelerated Lifetime Test

● switch from aluminum to gold wire bonds
● no optical epoxy
● began test on 10 arrays
 ■ no failures after 175 hours
Summary

- much learned from failed accelerated lifetime tests on VCSEL arrays
- started on latest accelerated lifetime test
- exercised burn-in/thermal cycle/QA system on opto-boards
- will build more nSQP B boards after successfully fabricated 10 IBL and 10 nSQP D opto-boards