Radiation-Hard/High-Speed Parallel Optical Links

The Ohio State University

P. Buchholz, A. Wiese, M. Ziolkowski
Universität Siegen

September 5, 2012
Outline

● Introduction to a compact solution
● Results with 5 Gb/s VCSEL array driver
● Summary
Use of VCSEL Arrays in ATLAS

- Widely used in off-detector data transmission
- First on-detector implementation in pixel detector
 - experience has been positive
 - VCSELs used are humidity sensitive but they are installed in very low humidity location
 - modern VCSELs are humidity tolerant
 - will use arrays for next pixel detector upgrade (IBL)
New Parallel Optical Engine

- Improved design for new pixel layer of ATLAS
 - use 12-channel VCSEL and PIN arrays
 - 36 optical channels

![Diagram of the new parallel optical engine](image)

- VCSEL opto-pack
- PIN opto-pack
- MPO connector

3 cm
New 12-Channel VCSEL Driver

- New ASIC designed using 130 nm CMOS
- Incorporate improvements taking advantage of experience from 1st generation parallel optical engine:
 - ✔ redundancy to bypass a broken VCSEL
 - ■ special thanks to FE-I4 group (Roberto Beccherle et al.) for command decoder circuit
 - ✔ power-on reset in case of communication failure:
 - ✔ no signal steering
 - ✔ 10 mA modulation current (on current)
 - ✔ 1 mA bias current (off current)
- Will only operate at 160 Mb/s for new pixel layer but designed ASIC to operate at much higher speed (5 Gb/s) to gain experience in designing high-speed parallel driver
New VCSEL Array Driver

- Only inner 8 channels connected to new pixel modules
 - future driver should reserve only one channel for redundancy

4.5 mm
High-Speed Test Configuration

10 Gb/s ULM
VCSEL array

VCSEL array driver

MPO connector
optical eye diagram @ 5 Gb/s is quite acceptable

special thanks to Alan Prosser @ Fermilab for use of equipment
SFP+ as Optical Probe

7 Gb/s BERT

13 GHz Oscilloscope

VCSEL array driver

Channel under test

Finisar 10 Gb/s Small Form Factor (SFP+) Transceiver
Optical Probe vs. SFP+

- SFP+ gives artificially somewhat better looking signal

K.K. Gan

Pixel2012
Eye with One/All Channels Active

- all channels work @ 5 Gb/s with bit error rate < 5×10^{-13} for all channels active
- jitter increases with all channels active but still passes the mask test
Effect of Steering on Eye

VCSEL spare 1

Receiving LVDS signal from channel 8, steering to VCSEL spare 1

LVDS in channel 8
Effect of Steering on Eye

- Steered channel still passes the mask test
- Jitter increases with all channels active

Spare 1 output with other channels off

Spare 1 output with all channels active
Optical Eye Diagram of Steered Signal

- Optical eye diagram of steered signal @ 5 Gb/s is quite acceptable

K.K. Gan

Pixel2012
Radiation Hardness

- 10 Gb/s VCSEL arrays have been proven to be radiation hard to tens of Mrad
 - send signal on ~1 m micro co-ax cables to less radiation and more serviceable location
- VCSEL array driver was irradiated with 24 GeV protons at CERN last August to test Radiation hardness
 - await return of irradiated ASICs for characterization
Future Plan

- 10 Gb/s transmission needed for ATLAS inner pixel layer and LAr readout upgrades
 - joint ATLAS/CMS proposal funded via US DOE generic R&D program
 - layout of driver stage completed (130 nm)

Extracted driver/buffers with bond pad
Summary

- VCSEL array offers compact solution to data transmission
- 5 Gb/s VCSEL array driver successfully prototyped
- Currently designing 10 Gb/s VCSEL array driver