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Lecture 4
Propagation of errors

Introduction
● Example: we measure the current (I) and resistance (R) of a resistor.

◆ Ohm's law:
V = IR

◆ If we know the uncertainties (e.g. standard deviations) in I and R, what is the uncertainty in V?
● Given a functional relationship between several measured variables (x, y, z),

◆ What is the uncertainty in Q if the uncertainties in x, y, and z are known?
■ To answer this question we use a technique called Propagation of Errors.

◆ Usually when we talk about uncertainties in a measured variable such as x, we assume:
■ the value of x represents the mean of a Gaussian distribution
■ the uncertainty in x is the standard deviation (σ) of the Gaussian distribution
■ not all measurements can be represented by Gaussian distributions (more on that later)

Propagation of Error Formula
●  To calculate the variance in Q as a function of the variances in x and y we use the following:

◆ If the variables x and y are uncorrelated (σxy = 0), the last term in the above equation is zero.
◆ Assume we have several measurement of the quantities x (e.g. x1, x2...xN) and y (e.g. y1, y2...yN).

■ The average of x and y:
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Q = f (x,y,z)
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◆ define:
evaluated at the average values

◆ expand Qi about the average values:

◆ assume the measured values are close to the average values
☞ neglect the higher order terms:

◆ If the measurements are uncorrelated
☞ the summation in the above equation is zero
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Qi " f (xi ,yi )

Q " f (µx ,µy )
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◆ If x and y are correlated, define σxy as:

● Example: Power in an electric circuit.
P = I2R

◆ Let  I = 1.0 ± 0.1 amp and R = 10 ± 1 Ω
 ☞ P = 10 watts

◆ calculate the variance in the power using propagation of errors

 ☞ P = 10 ± 2 watts
 ■ If the true value of the power was 10 W and we measured it many times with

an uncertainty (σ) of ± 2 W and Gaussian statistics apply
 ☞ 68% of the measurements would lie in the range [8,12] W

◆ Sometimes its convenient to put the above calculation in terms of relative errors:

■ the uncertainty in the current dominates the uncertainty in the power
☞  current must be measured more precisely to greatly reduce the uncertainty in the power
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● Example: The error in the average.  
◆ The average of several measurements each with the same uncertainty (σ) is given by:

☞ We can determine the mean better by combining measurements.
☞ The precision only increases as the square root of the number of measurements.

 ■ Do not confuse σµ with σ!  
 ■ σ is related to the width of the pdf (e.g. Gaussian) that the measurements come from. 
 ■ σ does not get smaller as we combine measurements.

Problem in the Propagation of Errors
● In calculating the variance using propagation of errors

◆ we usually assume the error in measured variable (e.g. x) is Gaussian
● If x is described by a Gaussian distribution

◆ f(x) may not be described by a Gaussian distribution!
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● What does the standard deviation that we calculate from propagation of errors mean?
◆ Example: The new distribution is Gaussian.

■ Let y = Ax, with A = a constant and x a Gaussian variable.
☞ µy = Aµx and σy = Aσx

■ Let the probability distribution for x be Gaussian:

☞ The new probability distribution for y, p(y, µy, σy), is also described by a Gaussian.
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◆ Example: When the new distribution is non-Gaussian: y = 2/x.
■ The transformed probability distribution function for y does not have the form of a Gaussian.

● Unphysical situations can arise if we use the propagation of errors results blindly!
  ◆ Example: Suppose we measure the volume of a cylinder: V = πR2L. 

■ Let R = 1 cm exact, and L = 1.0 ± 0.5 cm.
■ Using propagation of errors:

σV = πR2σL = π/2 cm3

V = π ± π/2 cm3

  ■ If the error on V (σV) is to be interpreted in the Gaussian sense
☞ finite probability (≈ 3%) that the volume (V) is < 0 since V is only 2σ away from than 0!  
☞ Clearly this is unphysical!
☞ Care must be taken in interpreting the meaning of σV.
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