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Lecture 5
Maximum Likelihood Method
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● Suppose we are trying to measure the true value of some quantity (xT).
◆ We make repeated measurements of this quantity {x1, x2, … xn}.
◆ The standard way to estimate xT from our measurements is to calculate the mean value: 

☞ set xT = µx.
☞ DOES THIS PROCEDURE MAKE SENSE???
☞ MLM: a general method for estimating parameters of interest from data.

● Statement of the Maximum Likelihood Method
◆ Assume we have made N measurements of x {x1, x2, … xn}.
◆ Assume we know the probability distribution function that describes x:  f(x, α).
◆ Assume we want to determine the parameter α.

☞ MLM: pick α to maximize the probability of getting the measurements (the xi's) that we did!
● How do we use the MLM?

◆ The probability of measuring x1 is f(x1, α)dx
◆ The probability of measuring x2 is f(x2, α)dx
◆ The probability of measuring xn is f(xn, α)dx
◆ If the measurements are independent, the probability of getting the measurements we did is:

◆ We can drop the dxn term as it is only a proportionality constant 


☞
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◆ We want to pick the α that maximizes L:

◆ Both L and lnL have maximum at the same location.
☞ maximize lnL rather than L itself because lnL converts the product into a summation.

☞ new maximization condition:

■ α could be an array of parameters (e.g. slope and intercept) or just a single variable.
■ equations to determine α range from simple linear equations to coupled non-linear equations.

● Example:
◆ Let f(x, α) be given by a Gaussian distribution.
◆ Let α = µ be the mean of the Gaussian.
◆ We want the best estimate of α from our set of n measurements {x1, x2, … xn}.
◆ Let’s assume that σ is the same for each measurement.

◆ The likelihood function for this problem is:
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◆ Find α that maximizes the log likelihood function:

◆ If σ are different for each data point
☞ α  is just the weighted average:
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● Example
◆ Let f(x, α) be given by a Poisson distribution.
◆ Let α = µ be the mean of the Poisson.
◆ We want the best estimate of α from our set of n measurements {x1, x2, … xn}.
◆ The likelihood function for this problem is:

◆ Find α that maximizes the log likelihood function:

Some general properties of the Maximum Likelihood Method
 For large data samples (large n) the likelihood function, L, approaches a Gaussian distribution.
 Maximum likelihood estimates are usually consistent.

☞ For large n the estimates converge to the true value of the parameters we wish to determine.
 Maximum likelihood estimates are usually unbiased.

☞ For all sample sizes the parameter of interest is calculated correctly.
 Maximum likelihood estimate is efficient: the estimate has the smallest variance.

   Maximum likelihood estimate is sufficient: it uses all the information in the observations (the xi’s).
   The solution from MLM is unique.

 Bad news: we must know the correct probability distribution for the problem at hand!
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Maximum Likelihood Fit of Data to a Function
● Suppose we have a set of n measurements:

◆ Assume each measurement error (σ) is a standard deviation from a Gaussian pdf.
◆ Assume that for each measured value y, there’s an x which is known exactly.
◆ Suppose we know the functional relationship between the y’s and the x’s:

■ α, β...are parameters.
☞ MLM gives us a method to determine α, β... from our data.

● Example: Fitting data points to a straight line:

◆ Find α and β by maximizing the likelihood function L likelihood function:
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◆ Assume all σ’s are the same for simplicity:

◆ We now have two equations that are linear in the two unknowns, α and β.

■ We will see this problem again when we talk about “least squares” (“chi-square”) fitting.
● EXAMPLE:

◆ A trolley moves along a track at constant speed.  Suppose the following measurements of the
time vs. distance were made.  From the data find the best value for the velocity (v) of the trolley.

◆ Our model of the motion of the trolley tells us that:
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◆ We want to find v, the slope (β) of the straight line describing the motion of the trolley.
◆ We need to evaluate the sums listed in the above formula:
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◆ The line best represents our data.
◆ Not all the data points are "on" the line.
◆ The line minimizes the sum of squares of the deviations between the line and our data (di):

MLM fit to the data for d = d0 + vt 
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