Lecture 6

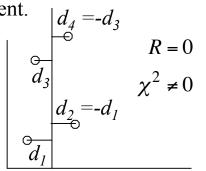
Chi Square Distribution (χ^2) and Least Squares Fitting

Chi Square Distribution (χ^2)

- Suppose:
 - We have a set of measurements $\{x_1, x_2, \dots x_n\}$.
 - We know the true value of each x_i (x_{t1} , x_{t2} , ... x_{tn}).
 - We would like some way to measure how good these measurements really are.
 - Obviously the closer the $(x_1, x_2, \dots x_n)$'s are to the $(x_{t1}, x_{t2}, \dots x_{tn})$'s,
 - the better (or more accurate) the measurements.
 - can we get more specific?
- Assume:
 - The measurements are independent of each other.
 - The measurements come from a Gaussian distribution.
 - $(\sigma_1, \sigma_2 \dots \sigma_n)$ be the standard deviation associated with each measurement.
- Consider the following two possible measures of the quality of the data:

$$R = \sum_{i=1}^{n} \frac{x_i - x_{ti}}{\sigma_i} = \sum_{i=1}^{n} \frac{d_i}{\sigma_i}$$

$$\chi^2 = \sum_{i=1}^n \frac{(x_i - x_{ti})^2}{\sigma_i^2} = \sum_{i=1}^n \frac{d_i^2}{\sigma_i^2}$$



- Which of the above gives more information on the quality of the data?
 - Both R and χ^2 are zero if the measurements agree with the true value.
 - R looks good because via the Central Limit Theorem as $n \to \infty$ the sum \to Gaussian.
 - However, χ^2 is better!

• One can show that the probability distribution for χ^2 is exactly:

$$p(\chi^2, n) = \frac{1}{2^{n/2} \Gamma(n/2)} [\chi^2]^{n/2 - 1} e^{-\chi^2/2} \qquad 0 \le \chi^2 \le \infty$$

- This is called the "Chi Square" (χ^2) distribution.
 - \star Γ is the Gamma Function:

$$\Gamma(x) = \int_0^\infty e^{-t} t^{x-1} dt \qquad x > 0$$

$$\Gamma(n+1) = n! \qquad n = 1, 2, 3...$$

$$\Gamma(\frac{1}{2}) = \sqrt{\pi}$$

This is a continuous probability distribution that is a function of two variables:

$$\star$$
 χ^2

★ Number of degrees of freedom (dof):

n = # of data points - # of parameters calculated from the data points

- **Example:** We collected N events in an experiment.
 - We histogram the data in n bins before performing a fit to the data points.
 - We have *n* data points!
- □ Example: We count cosmic ray events in 15 second intervals and sort the data into 5 bins:

Number of counts in 15 second intervals	0	1	2	3	4
Number of intervals	2	7	6	3	2

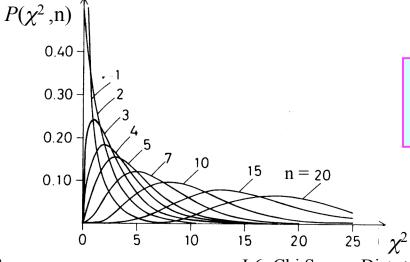
- o we have a total of 36 cosmic rays in 20 intervals
- we have only 5 data points
- Suppose we want to compare our data with the expectations of a Poisson distribution: $N = N_0 \frac{e^{-\mu} \mu^m}{m!}$

$$N = N_0 \frac{e^{-\mu} \mu^m}{m!}$$

- Since we set $N_0 = 20$ in order to make the comparison, we lost one degree of freedom: n = 5 - 1 = 4
- If we calculate the mean of the Poission from data, we lost another degree of freedom: n = 5 2 = 3
- □ Example: We have 10 data points.
 - Let μ and σ be the mean and standard deviation of the data.
 - If we calculate μ and σ from the 10 data point then n = 8.
 - If we know μ and calculate σ then n = 9.
 - If we know σ and calculate μ then n = 9.
 - If we know μ and σ then n = 10.
- Like the Gaussian probability distribution, the probability integral cannot be done in closed form:

$$P(\chi^2 > a) = \int_{a}^{\infty} p(\chi^2, n) d\chi^2 = \int_{a}^{\infty} \frac{1}{2^{n/2} \Gamma(n/2)} [\chi^2]^{n/2 - 1} e^{-\chi^2/2} d\chi^2$$

We must use to a table to find out the probability of exceeding certain χ^2 for a given dof

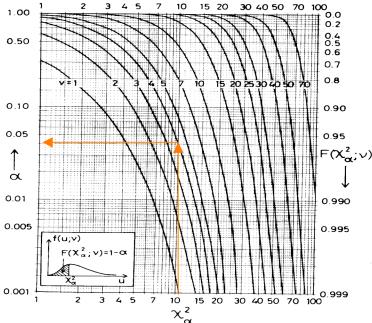


For $n \ge 20$, $P(\chi^2 > a)$ can be approximated using a Gaussian pdf with $a = (2\chi^2)^{1/2} - (2n-1)^{1/2}$

K.K. Gan

L6: Chi Square Distribution

- Example: What's the probability to have $\chi^2 > 10$ with the number of degrees of freedom n = 4?
 - ★ Using Table D of Taylor we find $P(\chi^2 > 10, n = 4) = 0.04$.
 - We say that the probability of getting a $\chi^2 > 10$ with 4 degrees of freedom by chance is 4%.



- Some not so nice things about the χ^2 distribution:
 - \star Given a set of data points two different functions can have the same value of χ^2 .
 - Does not produce a unique form of solution or function.
 - ★ Does not look at the order of the data points.
 - Ignores trends in the data points.
 - ★ Ignores the sign of differences between the data points and "true" values.
 - Use only the square of the differences.
 - □ There are other distributions/statistical test that do use the order of the points:

"run tests" and "Kolmogorov test"

Least Squares Fitting

- Suppose we have *n* data points (x_i, y_i, σ_i) .
 - Assume that we know a functional relationship between the points, y = f(x,a,b...)
 - Assume that for each y_i we know x_i exactly.
 - The parameters a, b, \dots are constants that we wish to determine from our data points.
 - A procedure to obtain a and b is to minimize the following χ^2 with respect to a and b.

$$\chi^2 = \sum_{i=1}^n \frac{[y_i - f(x_i, a, b)]^2}{\sigma_i^2}$$
This is very similar to the Maximum Likelihood Method.

- - ☐ For the Gaussian case MLM and LS are identical.
 - \Box Technically this is a χ^2 distribution only if the y's are from a Gaussian distribution.
 - \Box Since most of the time the y's are not from a Gaussian we call it "least squares" rather than χ^2 .
- Example: We have a function with one unknown parameter:

$$f(x,b) = 1 + bx$$

Find b using the least squares technique.

• We need to minimize the following:

$$\chi^2 = \sum_{i=1}^n \frac{[y_i - f(x_i, a, b)]^2}{\sigma_i^2} = \sum_{i=1}^n \frac{[y_i - 1 - bx_i]^2}{\sigma_i^2}$$
To find the *b* that minimizes the above function, we do the following:

$$\frac{\partial \chi^2}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^n \frac{[y_i - 1 - bx_i]^2}{\sigma_i^2} = \sum_{i=1}^n \frac{-2[y_i - 1 - bx_i]x_i}{\sigma_i^2} = 0$$

$$\sum_{i=1}^{n} \frac{y_i x_i}{\sigma_i^2} - \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2} - \sum_{i=1}^{n} \frac{b x_i^2}{\sigma_i^2} = 0$$

$$b = \frac{\sum_{i=1}^{n} \frac{y_i x_i}{\sigma_i^2} - \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2}}$$

- Each measured data point (y_i) is allowed to have a different standard deviation (σ_i) .
- LS technique can be generalized to two or more parameters for simple and complicated (e.g. non-linear) functions.
 - One especially nice case is a polynomial function that is linear in the unknowns (a_i) : $f(x,a_1...a_n) = a_1 + a_2x + a_3x^2 + a_nx^{n-1}$
 - We can always recast problem in terms of solving n simultaneous linear equations.
 - We use the techniques from linear algebra and invert an $n \times n$ matrix to find the a_i 's!
- Example: Given the following data perform a least squares fit to find the value of b.

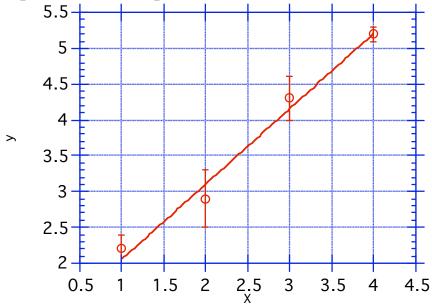
$$f(x,b) = 1 + bx$$

X	1.0	2.0	3.0	4.0
\mathcal{Y}	2.2	2.9	4.3	5.2
σ	0.2	0.4	0.3	0.1

• Using the above expression for b we calculate:

$$b = 1.05$$

• A plot of the data points and the line from the least squares fit:



- If we assume that the data points are from a Gaussian distribution,
 - we can calculate a χ^2 and the probability associated with the fit.

$$\chi^2 = \sum_{i=1}^n \frac{[y_i - 1 - 1.05x_i]^2}{\sigma_i^2} = \left(\frac{2.2 - 2.05}{0.2}\right)^2 + \left(\frac{2.9 - 3.1}{0.4}\right)^2 + \left(\frac{4.3 - 4.16}{0.3}\right)^2 + \left(\frac{5.2 - 5.2}{0.1}\right)^2 = 1.04$$

- From Table D of Taylor:
 - The probability to get $\chi^2 > 1.04$ for 3 degrees of freedom $\approx 80\%$.
 - We call this a "good" fit since the probability is close to 100%.
- If however the χ^2 was large (e.g. 15),
 - the probability would be small ($\approx 0.2\%$ for 3 dof).
 - we say this was a "bad" fit.

RULE OF THUMB A "good" fit has $\chi^2 / \text{dof} \le 1$