## Lecture 7

## Some Advanced Topics using Propagation of Errors and Least Squares Fitting Error on the mean (review from Lecture 4)

- Question: If we have a set of measurements of the same quantity:  $x_1 \pm \sigma_1$   $x_2 \pm \sigma_2 ... x_n \pm \sigma_n$ 
  - What's the best way to combine these measurements?
  - How to calculate the variance once we combine the measurements?
  - Assuming Gaussian statistics, the Maximum Likelihood Methods combine the measurements as:

$$x = \frac{\sum_{i=1}^{n} x_i / \sigma_i^2}{\sum_{i=1}^{n} 1 / \sigma_i^2}$$
 weighted average

• If all the variances  $(\sigma_1^2 = \sigma_2^2 = ...\sigma_n^2)$  are the same:

$$x = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 unweighted average

 $n_{i=1}$ The variance of the weighted average can be calculated using propagation of errors:

$$\sigma_{x}^{2} = \sum_{i=1}^{n} \left[ \frac{\partial}{\partial x_{i}} x \right]^{2} \sigma_{i}^{2} = \sum_{i=1}^{n} \frac{1/\sigma_{i}^{4}}{\left[ \sum_{i=1}^{n} 1/\sigma_{i}^{2} \right]^{2}} \sigma_{i}^{2} = \frac{1}{\left[ \sum_{i=1}^{n} 1/\sigma_{i}^{2} \right]^{2}} \sum_{i=1}^{n} 1/\sigma_{i}^{2}$$

$$\sigma_x^2 = \frac{1}{\sum_{i=1}^{n} 1/\sigma_i^2}$$
  $\sigma_x$  is the error in the weighted mean

• If all the variances are the same:  

$$\sigma_x^2 = 1/\sum_{i=1}^n 1/\sigma_i^2 = 1/[n/\sigma^2] = \frac{\sigma^2}{n}$$

Lecture 4

- The error in the mean  $(\sigma_r)$  gets smaller as the number of measurements (n) increases.
- Don't confuse the error in the mean  $(\sigma_r)$  with the standard deviation of the distribution  $(\sigma)$ !
- If we make more measurements
  - the standard deviation ( $\sigma$ ) of the distribution remains the same  $\frac{80}{60}$
  - the error in the mean  $(\sigma_r)$  decreases



## **More on Least Squares Fit (LSQF)**

- In Lec 5, we discussed how we can fit our data points to a linear function (straight line) and get the "best" estimate of the slope and intercept. However, we did not discuss two important issues:
  - How to estimate the uncertainties on our slope and intercept obtained from a LSQF?
  - How to apply the LSQF when we have a non-linear function?
- Estimation of Errors from a LSQF
  - Assume we have data points that lie on a straight line:

$$y = \alpha + \beta x$$

- Assume we have n measurements of x's and y's.
- For simplicity, assume that each y measurement has the same error  $\sigma$ .
- Assume that x is known much more accurately than y.
  - $\blacksquare$  ignore any uncertainty associated with x.

Previously we showed that the solution for the intercept 
$$\alpha$$
 and slope  $\beta$  is:
$$\alpha = \frac{\sum_{i=1}^{n} y_i \sum_{i=1}^{n} x_i^2 - \sum_{i=1}^{n} x_i y_i \sum_{i=1}^{n} x_i}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} \text{ and } \beta = \frac{\sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \sum_{i=1}^{n} y_i}{n \sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2}$$

K.K. Gan

- Since  $\alpha$  and  $\beta$  are functions of the measurements  $(y_i's)$

use the Propagation of Errors technique to estimate 
$$\sigma_{\alpha}$$
 and  $\sigma_{\beta}$ .
$$\sigma_{Q}^{2} = \sigma_{x}^{2} \left(\frac{\partial Q}{\partial x}\right)^{2} + \sigma_{y}^{2} \left(\frac{\partial Q}{\partial y}\right)^{2} + 2\sigma_{xy} \left(\frac{\partial Q}{\partial x}\right) \left(\frac{\partial Q}{\partial y}\right)$$

Assumed that each measurement is independent of each other:

$$\sigma_{Q}^{2} = \sigma_{x}^{2} \left(\frac{\partial Q}{\partial x}\right)^{2} + \sigma_{y}^{2} \left(\frac{\partial Q}{\partial y}\right)^{2}$$

$$\sigma_{\alpha}^{2} = \sum_{i=1}^{n} \sigma_{y_{i}}^{2} \left(\frac{\partial \alpha}{\partial y_{i}}\right)^{2} = \sigma^{2} \sum_{i=1}^{n} \left(\frac{\partial \alpha}{\partial y_{i}}\right)^{2}$$

$$\frac{\partial \alpha}{\partial y_{i}} = \frac{\partial}{\partial y_{i}} \frac{\sum_{i=1}^{n} \sum_{j=1}^{n} x_{j}^{2} - \sum_{i=1}^{n} x_{i} y_{i} \sum_{j=1}^{n} x_{j}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}} = \frac{\sum_{j=1}^{n} x_{j}^{2} - x_{i} \sum_{j=1}^{n} x_{j}}{n \sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}$$

$$\sigma_{\alpha}^{2} = \sigma^{2} \sum_{i=1}^{n} \left(\frac{\sum_{j=1}^{n} x_{j}^{2} - x_{i} \sum_{j=1}^{n} x_{j}}{n \sum_{j=1}^{n} x_{j}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}\right) = \sigma^{2} \sum_{i=1}^{n} \left(\frac{\sum_{j=1}^{n} x_{j}^{2} - x_{i} \sum_{j=1}^{n} x_{j}}{n \sum_{j=1}^{n} x_{j}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2}}\right)$$

$$\sigma_{\alpha}^{2} = \sigma^{2} \frac{n(\sum_{j=1}^{n} x_{j}^{2})^{2} + \sum_{i=1}^{n} x_{i}^{2} (\sum_{j=1}^{n} x_{j})^{2} - 2(\sum_{j=1}^{n} x_{j})^{2} \sum_{j=1}^{n} x_{j}^{2}}{(n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2})^{2}} = \sigma^{2} \frac{n(\sum_{j=1}^{n} x_{j}^{2})^{2} - \sum_{i=1}^{n} x_{i}^{2} (\sum_{j=1}^{n} x_{j})^{2}}{(n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2})^{2}}$$

$$= \sigma^{2} \sum_{j=1}^{n} x_{j}^{2} \frac{n\sum_{i=1}^{n} x_{j}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}{(n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2})^{2}}$$

$$\sigma_{\alpha}^{2} = \sigma^{2} \frac{\sum_{j=1}^{n} x_{j}^{2}}{n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}} \text{ variance in the intercept}$$

\* We can find the variance in the slope  $(\beta)$  using exactly the same procedures

$$\sigma_{\beta}^{2} = \sum_{i=1}^{n} \sigma_{y_{i}}^{2} \left(\frac{\partial \beta}{\partial y_{i}}\right)^{2} = \sigma^{2} \sum_{i=1}^{n} \left(\frac{\partial \beta}{\partial y_{i}}\right)^{2} =$$

$$= \sigma^2 \frac{n^2 \sum_{j=1}^n x_j^2 + n(\sum_{j=1}^n x_j)^2 - 2n \sum_{i=1}^n x_i \sum_{j=1}^n x_j}{(n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2)^2} = \sigma^2 \frac{n^2 \sum_{j=1}^n x_j^2 - n(\sum_{j=1}^n x_j)^2}{(n \sum_{i=1}^n x_i^2 - (\sum_{i=1}^n x_i)^2)^2}$$

$$\sigma_{\beta}^{2} = \frac{n\sigma^{2}}{n\sum_{i=1}^{n} x_{i}^{2} - (\sum_{i=1}^{n} x_{i})^{2}}$$
 variance in the slope

- If we don't know the true value of  $\sigma$ ,
  - estimate variance using the spread between the measurements  $(y_i)$  and the fitted values of y:

$$\sigma^2 \approx \frac{1}{n-2} \sum_{i=1}^{n} (y_i - y_i^{fit})^2 = \frac{1}{n-2} \sum_{i=1}^{n} (y_i - \alpha - \beta x_i)^2$$

- $\star$  n-2 = number of degree of freedom
  - = number of data points number of parameters  $(\alpha, \beta)$  extracted from the data
- If each  $y_i$  measurement has a different error  $\sigma_i$ :

$$\sigma_{\alpha}^{2} = \frac{1}{D} \sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{i}^{2}}$$

$$\sigma_{\beta}^2 = \frac{1}{D} \sum_{i=1}^n \frac{1}{\sigma_i^2}$$

weighted slope and intercept

$$D = \sum_{i=1}^{n} \frac{1}{\sigma_i^2} \sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2} - (\sum_{i=1}^{n} \frac{x_i}{\sigma_i^2})^2$$

- ★ The above expressions simplify to the "equal variance" case.
  - $\Box$  Don't forget to keep track of the "n's" when factoring out  $\sigma$ . For example:

$$\sum_{i=1}^{n} \frac{1}{\sigma_i^2} = \frac{n}{\sigma^2} \quad not \quad \frac{1}{\sigma^2}$$

- LSQF with non-linear functions:
  - For our purposes, a non-linear function is a function where one or more of the parameters that we are trying to determine (e.g.  $\alpha$ ,  $\beta$  from the straight line fit) is raised to a power other than 1.
    - **Example:** functions that are non-linear in the parameter  $\tau$ .

$$y = A + x/\tau$$
$$y = A + x\tau^{2}$$
$$y = Ae^{-x/\tau}$$

- $\star$  These functions are linear in the parameters A.
- The problem with most non-linear functions is that we cannot write down a solution for the parameters in a closed form using, for example, the techniques of linear algebra (i.e. matrices).
  - Usually non-linear problems are solved numerically using a computer.
  - Sometimes by a change of variable(s) we can turn a non-linear problem into a linear one.
    - ★ Example: take the natural log of both sides of the above exponential equation:

$$\ln y = \ln A - x/\tau = C - Dx$$

- $\Box$  A linear problem in the parameters C and D!
- ☐ In fact its just a straight line!
- To measure the lifetime  $\tau$  (Lab 6) we first fit for D and then transform D into  $\tau$ .
- Example: Decay of a radioactive substance. Fit the following data to find  $N_0$  and  $\tau$ :

$$N = N_0 e^{-t/\tau}$$

- $\blacksquare$  N represents the amount of the substance present at time t.
- $N_0$  is the amount of the substance at the beginning of the experiment (t = 0).
- $\boldsymbol{\tau}$  is the lifetime of the substance.

| i               | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    |
|-----------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| $t_i$           | 0     | 15    | 30    | 45    | 60    | 75    | 90    | 105   | 120   | 135   |
| $N_i$           | 106   | 80    | 98    | 75    | 74    | 73    | 49    | 38    | 37    | 22    |
| $y_i = \ln N_i$ | 4.663 | 4.382 | 4.585 | 4.317 | 4.304 | 4.290 | 3.892 | 3.638 | 3.611 | 3.091 |

$$D = -\beta = -\frac{n\sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} y_i \sum_{i=1}^{n} x_i}{n\sum_{i=1}^{n} x_i^2 - (\sum_{i=1}^{n} x_i)^2} = -\frac{10 \times 2560.41 - 40.773 \times 675}{10 \times 64125 - (675)^2} = 0.01033$$

$$\tau = 1/D = 96.80 \text{ sec}$$

■ The intercept is given by:  $C = 4.77 = \ln A$  or A = 117.9



K.K. Gan

L7: Some Advanced Topics

- Example: Find the values A and  $\tau$  taking into account the uncertainties in the data points.
  - The uncertainty in the number of radioactive decays is governed by Poisson statistics.
  - The number of counts  $N_i$  in a bin is assumed to be the average  $(\mu)$  of a Poisson distribution:  $\mu = N_i = \text{Variance}$
  - The variance of  $y_i (= \ln N_i)$  can be calculated using propagation of errors:

$$\sigma_{\nu}^{2} = \sigma_{N}^{2} \left( \frac{\partial y}{\partial N} \right)^{2} = (N) \left( \frac{\partial \ln N}{\partial N} \right)^{2} = (N) \left( \frac{1}{N} \right)^{2} = \frac{1}{N}$$

The slope and intercept from a straight line fit that includes uncertainties in the data points:

$$\alpha = \frac{\sum_{i=1}^{n} \frac{y_i}{\sigma_i^2} \sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2} - \sum_{i=1}^{n} \frac{x_i y_i}{\sigma_i^2} \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2} \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2} - \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2} \sum_{i=1}^{n} \frac{y_i}{\sigma_i^2}} \text{ and } \beta = \frac{\sum_{i=1}^{n} \frac{1}{\sigma_i^2} \sum_{i=1}^{n} \frac{x_i y_i}{\sigma_i^2} - \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2} \sum_{i=1}^{n} \frac{y_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{1}{\sigma_i^2} \sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2} - (\sum_{i=1}^{n} \frac{x_i}{\sigma_i^2})^2}$$

Taylor P. 198 and Problem 8.9

★ If all the  $\sigma$ 's are the same then the above expressions are identical to the unweighted case.  $\alpha = 4.725$  and  $\beta = -0.00903$ 

$$\tau = -1/\beta = 1/0.00903 = 110.7 \text{ sec}$$

**To** calculate the error on the lifetime, we first must calculate the error on  $\beta$ :

$$\sigma_{\beta}^{2} = \frac{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}}}{\sum_{i=1}^{n} \frac{1}{\sigma_{i}^{2}} \sum_{i=1}^{n} \frac{x_{i}^{2}}{\sigma_{i}^{2}} - (\sum_{i=1}^{n} \frac{x_{i}}{\sigma_{i}^{2}})^{2}} = \frac{652}{652 \times 2684700 - (33240)^{2}} = 1.01 \times 10^{-6}$$

$$\sigma_{\tau}^2 = \sigma_{\beta}^2 (\partial \tau / \partial \beta)^2 \Rightarrow \sigma_{\tau} = \sigma_{\beta} (1/\beta^2) = \frac{1.005 \times 10^{-3}}{(9.03 \times 10^{-3})^2} = 12.3$$

The experimentally determined lifetime is

$$\tau = 110.7 \pm 12.3$$
 sec.