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Lecture 3:  R-L-C AC Circuits


Volts

period

amplitudeVo

-Vo

 

AC (Alternative Current):

● 
Most of the time, we are interested in the voltage at a point in the circuit


☞ 
will concentrate on voltages here rather than currents.


◆ 
We encounter AC circuits whenever a periodic voltage is applied to a circuit. 


◆ 
The most common periodic voltage is in the form of a sine (or cosine) wave:



 
■ 
V0 is the amplitude:


 
 
❐ 
V0 = Peak Voltage (VP)


 
 
❐ 
V0 = 1/2 Peak-to-Peak Voltage (VPP)


 
 
 
❍ 
VPP: easiest to read off scope


 
 
❐ 
V0 = √2 VRMS  = 1.41 VRMS  


 
 
 
❍ 
VRMS: what multimeters usually read


€ 

V (t) =V0 cosωt    or    V (t) =V0 sinωt
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■  ω is the angular frequency:


 
 
❐ 
ω = 2πf, with f = frequency of the waveform.


 
 
❐ 
frequency (f) and period (T) are related by:


 
 
 
 
T (sec) = 1/f (sec-1)


 
■ 
Household line voltage is usually 110-120 VRMS (156-170 VP), f = 60 Hz.



◆ 
It is extremely important to be able to analyze circuits (systems) with sine or cosine inputs


 
■ 
Almost any waveform can be constructed from a sum of sines and cosines.


 
■ 
This is the “heart” of Fourier analysis (Simpson, Chapter 3).


 
■ 
The response of a circuit to a complicated waveform (e.g. a square wave) can be understood


 
 
by analyzing individual sine or cosine components that make up the complicated waveform.


 
■ 
Usually only the first few components are important in determining the circuit’s response


 
 
to the input waveform.


R-C Circuits and AC waveforms

● 
There are many different techniques for solving AC circuits


◆ 
All are based on Kirchhoff's laws.


◆ 
When solving for voltage and/or current in an AC circuit we are really solving a differential eq.


◆ 
Different circuit techniques are really just different ways of solving the same differential eq: 



 
■ 
brute force solution to differential equation      



 
■ 
complex numbers (algebra)      



 
■ 
Laplace transforms (integrals)
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●  We will solve the following RC circuit using the brute force method and complex numbers method.


◆ 
Let the input (driving) voltage be V(t) = V0cosωt and we want to find VR(t) and VC(t).


 




◆ 
Brute Force Method:  Start with Kirchhoff's loop law:


 




 
■ 
We have to solve an inhomogeneous D.E.


 
■ 
The usual way to solve such a D.E. is to assume the solution has the same form as the input:



 
■ 
Plug our trial solution Q(t) back into the D.E.:


R

C
V  t(  )

 

€ 

V (t) =VR (t)+VC (t)
V0 cosωt = IR+Q /C

= RdQ(t) /dt+Q(t) /C

€ 

Q(t) =α sinωt+β cosωt

€ 

V0 cosωt =αRω cosωt −βRω sinωt+ (α /C)sinωt+ (β /C)cosωt
= (αRω +β /C)cosωt+ (α /C −βRω)sinωt

V0 =αRω +β /C
α /C = βRω

α =
RC2ωV0
1+ RCω( )2

β =
CV0
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■ 
We can now write the solution for VC(t):


 




 
■ 
We would like to rewrite the above solution in such a way that only a cosine term appears.


 
 
❑ 
In this form we can compare it to the input voltage.



 
 
❑ 
We get the above equation in terms of cosine only using the following basic trig:


 
 
 
 



 
 
❑ 
We can now define an angle such that:



 
 
 
☞ 
VC(t) and V0(t) are out of phase.


€ 

VC (t) =Q /C
= (α sinωt+β cosωt) /C

=
RCωV0

1+ (RCω)2
sinωt+ V0

1+ (RCω)2
cosωt

€ 

VC (t) =
V0

1+ (RCω)2
RCω

1+ (RCω)2
sinωt+ 1

1+ (RCω)2
cosωt

 

 
 
 

 

 
 
 

€ 

cosφ =
1

1+ (RCω)2

sinφ =
RCω

1+ (RCω)2

tanφ = RCω

VC (t) =
V0

1+ (RCω)2
cos(ωt −φ)

€ 

cos(θ1 −θ2 ) = sinθ1 sinθ2 + cosθ1 cosθ2
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■ 
Using the above expression for VC(t), we obtain:


 




 
 
❑ 
We would like to have cosines instead of sines by using:


 




 
 
 
☞


 
 
 



 
 
 
 
❍ 
VC(t), VR(t), and I(t) are all out of phase with the applied voltage.


 
 
 
 
❍ 
I(t) and VR(t) are in phase with each other.


 
 
 
 
❍ 
VC(t) and VR(t) are out of phase by 900.


 
 
 
 
❍ 
The amplitude of VC(t) and VR(t) depend on ω.


€ 

VR (t) = IR

= R dQ
dt

= RC dVC
dt

=
−RCωVo
1+ (RCω)2

sin(ωt −φ)

€ 

−sinθ = cos(θ + π
2 )

VR (t) =
RCωVo
1+ (RCω)2

cos(ωt −φ + π
2 )
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■ 
Example: RC Circuit 


+ SIN
VSIN0

R1
1E3Ω

C2
1E-5F

+

-
V out

60 Hz

Vp = 1 V
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◆  Solving circuits with complex numbers:


 
■ 
PROS:


 
 
❑ 
don't explicitly solve differential equations (lots of algebra).


 
 
❑ 
can find magnitude and phase of voltage separately.


 
■ 
CONS:


 
 
❑ 
have to use complex numbers!


 
 
❑ 
No “physics” in complex numbers.


 
■ 
What's a complex number? (see Simpson, Appendix E, P835)


 
 
❑ 
Start with 
 
   (solution to x2 + 1 = 0).


 
 
❑ 
A complex number can be written in two forms:


 
 
 
❂ 
X = A + jB


 
 
 
 
❍ 
A and B are real numbers


 
 
 
❂ 
X = R ejφ


 
 
 
 
❍ 
R = (A2 + B2)1/2 and tanφ = B/A (remember ejφ  = cosφ + j sinφ)


 
 
❑ 
Define the complex conjugate of X as:



 
 
❑ 
The magnitude of X can be found from:


 
    


 
 
❑ 
Suppose we have 2 complex numbers, X and Y with phases α and β respectively,


 
 
 
 
 




 
 
 
 
❍ 
magnitude of Z: |X|/|Y|


 
 
 
 
❍ 
phase of Z: α - β


 
■  So why is this useful?


€ 

j ≡ −1

€ 

X* = A − jB    or    X* = R e− jφ

€ 

| X |= (XX*)1/2 = (X * X)1/2 = (A2 +B2 )1/2

€ 

Z =
X
Y

=
X e jα

Y e jβ
=
X
Y
e j(α−β)
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◆ 
Consider the case of the capacitor and AC voltage:



 
■ 
V and XC are complex numbers


 
☞ 
We now have Ohm's law for capacitors using the capacitive reactance XC:


 
 
 
 



€ 

V (t) =V0 cosωt

= Real V0e
jωt( )

Q =CV

I(t) =C dV
dt

= −CωV0 sinωt

= Real jωCV0e
jωt( )

= Real V0e
jωt

1 jωC

 

 
 

 

 
 

= Real V
XC

 

 
 

 

 
 

€ 

XC =
1
jωC
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◆ 
We can make a similar case for the inductor:



 
■ 
V and XL are complex numbers


 
☞ 
We now have Ohm’s law for inductors using the inductive reactance XL:


 
 
 
XL =jωL


◆ 
XC and XL act like frequency dependent resistors.


 
■ 
They also have a phase associated with them due to their complex nature.


 
■ 
XL ⇒ 0 
as ω ⇒ 0 
(short circuit, DC)


 
■ 
XL ⇒ ∞ 
as ω ⇒ ∞ 
(open circuit)


 
■ 
XC ⇒ 0 
as ω ⇒ ∞  
(short circuit)


 
■ 
XC  ⇒ ∞ 
as ω ⇒ 0 
(open circuit, DC)


€ 

V = L dI
dt

I(t) =
1
L

V∫  dt

=
1
L

V0∫ cosωt dt

=
V0 sinωt
Lω

= Real V0e
jωt

jωL

 

 
 

 

 
 

= Real V
XL

 

 
 

 

 
 
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◆  Back to the RC circuit. 


 
■ 
Allow voltages, currents, and charge to be complex:



 
■ 
We can write an expression for the charge (Q) taking into account the phase difference (φ)


 
 
between applied voltage and the voltage across the capacitor (VC).



 
 
❑ 
Q and VC are complex



 
 
❑ 
A and C are real


 
■ 
We can find the complex current by differentiating the above:


€ 

Vin =V0 cosωt

= Real V0e
jωt( )

= Real VR +VC( )

€ 

Q(t) =CVC (t)

= Ae j(ωt−φ)

€ 

I(t) = dQ(t) /dt

= jωAe j(ωt−φ)

= jωQ(t)
= jωCVC (t)

Vin =VC +VR
=VC + IR
=VC + jωCVCR
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❑ 
looks like a voltage divider equation!!!!!


 
■ 
We can easily find the magnitude of VC :



 
 
❑ 
same as the result on page 4.


€ 

VC =
Vin

1+ jωRC

=Vin

1
jωC

R+
1
jωC

=Vin
XC

R+ XC

€ 

VC = Vin
XC

R+ XC

=
V0

1
ωC

R2 + (1 ωC)2

=
V0

1+ RCω( )2
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■ 
Is this solution the same as what we had when we solved by brute force page 3?



 




 
 
☞ 
YES the solutions are identical.


€ 

VC = Real Vin
1+ jωRC
 

 
 

 

 
 

= Real V0e
jωt

1+ jωRC

 

 
 

 

 
 

= Real V0e
jωt

1+ (ωRC)2e jφ
 

 
  

 

 
  

= Real V0e
j(ωt−φ)

1+ (ωRC)2
 

 
  

 

 
  

=
V0 cos(ωt −φ)
1+ (ωRC)2

φ is given by tanφ = ωRC
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■ 
We can now solve for the voltage across the resistor.


 
 
❑ 
Start with the voltage divider equation in complex form:



 
 
☞ 
This amplitude is the same as the brute force differential equation case!


 
■ 
In adding complex voltages, we must take into account the phase difference between them.  


 
 
❑ 
the sum of the voltages at a given time satisfy:


 
 
 
✔ 


 
 
 
✘ 


R-C Filters


◆ 
Allow us to select (reject) wanted (unwanted) signals on the basis of their frequency structure.


◆ 
Allow us to change the phase of the voltage or current in a circuit.


◆ 
Define the gain (G) or transfer (H) function of a circuit:


 
■ 
G(jω) = H(jω) = Vout/Vin (jω is often denoted by s).


 
■ 
G is independent of time, but can depend on ω, R, L, C.


€ 

VR =
VinR
R+ XC

VR =
Vin R
R+ XC

=
V0R

R2 + (1 ωC)2

=
V0ωRC
1+ (ωRC)2

€ 

V0
2 =|VR |

2 + |VC |
2

V0 =|VR |+ |VC |
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◆ 
For an RC circuit we can define GR and GC:


 




◆ 
We can categorize the G's as follows:


● 
Decibels and Bode Plots:


◆ 
Decibel (dB) describes voltage or power gain:



◆ 
Bode Plot is a log-log plot with dB on the y axis and log(ω) or log(f) on the x axis.


R

C

GR  ≡ V R

V in
 = R

R + X C
 = R

R + 1/jωC

GC ≡
V C

V in
 = 

 X C

R + X C
 = 

1/jωC
R + 1/jωC

V  t(  )

 

GR GC

High Frequencies ≈ 1, no phase shift 

high pass filter 
≈ 1/jωCR ≈ 0, phase shift 

Low Frequencies ≈ jωCR ≈ 0, phase shift ≈ 1, no phase shift 
low pass filter 

€ 

dB = 20 log(Vout /Vin )
=10 log(Pout /Pin )
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R

CV(t)

GR ≡ VR
Vin

 = R
R +  XC

 = R
R + 1/j ωC

GC ≡ VC
Vin

 =  XC
R +  XC

 = 1/j ωC
R + 1/j ωC

V(t) Vout

VoutV(t)
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◆ 
3 dB point or 3 dB frequency: 


 
■ 
also called break frequency, corner frequency, 1/2 power point


 
■ 
At the 3 dB point:



 



 
 
☞ 
ωRC = 1 for high or low pass filter


€ 

Vout
Vin

=
1
2

     since 3 = 20 log(Vout /Vin )

Pout
Pin

=
1
2

        since 3 =10 log(Pout /Pin )
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