
Diodes:   
● What do we use diodes for? 

 ◆  protect circuits by limiting the voltage (clipping and clamping) 
 ◆  turn AC into DC (voltage rectifier) 
 ◆  voltage multipliers (e.g. double input voltage) 
 ◆  non-linear mixing of two voltages (e.g. amplitude modulation) 

● Diodes (and transistors) are non-linear device: V ≠ IR! 
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Diode conducts when 
    V anode > V cathode 
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 ◆  Diode is forward biased when Vanode > Vcathode. 
  ■  Diode conducts current strongly 
  ■  Voltage drop across diode is (almost) independent of diode current  
  ■  Effective resistance (impedance) of diode is small 

 ◆  Diode is reverse biased when Vanode < Vcathode.  
  ■  Diode conducts current very weakly (typically < µA) 
  ■  Diode current is (almost) independent of voltage, until breakdown   
  ■  Effective resistance (impedance) of diode is very large 

 ◆  Current-voltage relationship for a diode: 
      
  ■  "diode", "rectifier", or "Ebers-Moll" equation 
  ■  Is = reverse saturation current (typically < µA) 
  ■  k = Boltzmann's constant, e = electron charge, T = temperature 
  ■  At room temperature, kT/e = 25.3 mV, 
    I = Ise39V  if V > 0 
    I =-Is   if V < 0. 

 ◆  Effective resistance of forward biased diode (V > 0): 
   dV/dI = (kT /e)/I ≈ 25 Ω/I, I in mA 

€ 

I = Is (e
eV /kT −1)
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●  What's a diode made out of? 
 ◆  Semiconductors! 
◆  The energy levels of a semiconductor can be modified 
  ☞  a material (e.g. silicon or germanium) that is normally an insulator will conduct electricity. 
 ◆ Energy level structure of a semiconductor is complicated, requires quantum mechanical treatment. 

  Material    Example   Resistivity (Ω-cm) 
  Conductor    Copper    1.56x10-6 

  Semiconductor   Silicon    103-106 

  Insulator    Ceramics   1011-1014 
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●  How do we turn a semiconductor into a conductor? 
 ◆  Dope it! 
 ◆  Doping is a process where impurities are added to the semiconductor to lower its resistivity 
 ◆  Silicon has 4 electrons in its valence level 
 ◆  We add atoms with 3 or 5 valence shell electrons to a piece of silicon. 
  ■  Phosphorous, Arsenic, Antimony have 5 valence electrons 
  ■  Boron, Aluminum, Indium have 3 valence electrons 

●  N type silicon: 
 ◆  Adding atoms which have 5 valence electrons makes the silicon more negative. 
 ◆  The majority carriers are the excess electrons. 

●  P type silicon 
 ◆  Adding atoms which have 3 valence electrons makes the silicon more positive. 
 ◆  The majority carriers are "holes”. 
  ■ A hole is the lack of an electron in the valence shell. 
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●  How do we make a diode? 
 ◆  Put a piece of N type silicon next to a piece of P type silicon. 

●  Unbiased diode 

●  Forward biased diode 

●  Reversed biased diode 
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Forward Current 

Silicon + Boron Silicon + Arsenic 

Depletion zone

  mobile electron 
 ⊕  mobile hole 
    -  fixed ionized acceptor atom 
  +  fixed ionized doner atom 
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●  diode characteristics 
 ◆  reverse voltage and current 
 ◆  peak current and voltage 
 ◆  capacitance 
 ◆  recovery time 
 ◆  sensitivity to temperature 

●  types of diodes  
 ◆  junction diode (ordinary type) 
 ◆  light emitting (LED) 
 ◆  photodiodes (absorbs light, gives current) 
 ◆  Schottky (high speed switch, low turn on voltage,  Al. on Silicon)  
 ◆  tunnel (I vs. V slightly different than jd's, negative resistance!)  
 ◆  veractor (junction capacitance varies with voltage) 
 ◆  zener (special junction diode, use reversed biased)
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●  Examples of Diode Circuits 
 ◆  Simplest Circuit: What's voltage drop across diode? 

 ◆  In diode circuits we still use Kirchhoff’s law: 

   

◆  For this circuit Id vs. Vd is a straight line with the following limits: 

  ■  The straight line (load line) is all possible (Vd, I) for the circuit. 
  ■ The diode curve is all possible (Vd, I) for the diode. 
  ■ The place where these two lines intersect gives the actual voltage and current for this circuit. 

€ 

Vin =Vd + IdR
Id =Vin/R −Vd/R

€ 

Vd = 0     ⇒   Id =Vin /R =10 mA
Vd =1 V  ⇒   Id = 0

Vd

Id
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●  Diode Protection (clipping and clamping) 
 ◆  The following circuit will get rid of the negative part of the input wave. 
 ◆  When the diode is negative biased, no current can flow in the resistor, so Vout = 0. 
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d1 d2

V2V1

●  For more protection consider the following "clipping" circuit: for silicon Vd ≈ 0.6-0.7 V 

 ◆  If Va > Vd1 + V1 , then diode 1 conducts so Vout ≤ Vd1 + V1. 
 ◆  If Va < - Vd2 – V2 , then diode 2 conducts so Vout ≥ - Vd2 – V2 . 
 ◆  If we assume Vd1 = Vd2 ≈ 0.7 V and V1 = 0.5, V2 = 0.25 V, 
  ■ for Vin > 1.2 V, d1 conducts 
  ■ for Vin < -0.95 V, d2 conducts 
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●  Turning AC into DC (rectifier circuits) 
 ◆  Consider the following circuit with 4 diodes: full wave rectifier. 

 ◆  In the positive part of Vin, diodes 2 and 3 conduct. 
 ◆  In negative part of the cycle, diodes 1 and 4 conduct. 
 ◆  This circuit has lots of ripple. 
  ■  We can reduce ripple by putting a capacitor across the load resistor. 
  ■  Pick RC time constant such that: RC > 1/(60 Hz) = 16.6 msec. 
   ❏  example: R = 100 Ω and C = 100 µF to reduce ripple 
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Transistors: 
●  Transistors are the heart of modern electronics (replaced vacuum tubes) 

 ◆  voltage and current amplifier circuits 
 ◆  low power and small size, can pack thousands of transistors in mm2 (computers) 

●  In this class we will only consider bipolar transistors. 
 ◆  Bipolar transistors have 3 leads: emitter, base, collector 
 ◆  Bipolar transistors are two diodes back to back and come in two forms: 

N        P      N
Emitter   Base     Collector

P           N         P
Emitter      Base     Collector
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Arrow is always on the
 emitter and is in the direction
 of positive current flow

■  N material has excess
  negative charge (electrons). 
■  P material has excess
  positive charge (holes). 
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●  Some simple rules for getting transistors to work 
 1.  For NPN (PNP) collector must be more positive (negative) in voltage than emitter. 

 2.  Base-emitter and base-collector are like diodes: 

  ☞  For silicon transistors, VBE ≈ 0.6-0.7 V when transistor is on. 

 3.  The currents in the base (IB), collector (IC) and emitter (IE) are related as follows: 
  ■ always:  IB + IC = IE 
  ■ rough rule:  IC ≈ IE , and the base current is very small (≈ 0.01 IC) 
  ■  Better approximation uses 2 related constants, α and β. 
   ❍ IC = βIB 
    ❒ β is called the current gain, typically 20-200 
   ❍ IC = αIE 
    ❒ α typically 0.99 
  ■  Still better approximation: 
   ❍  uses 4 (hybrid) parameters to describe transistor performance (β = hfe) 
   ❍  when all else fails, resort to the data sheets! 

 4.  Common sense: must not exceed the power rating, current rating etc. or else the transistor dies. 
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●  Transistor Amplifiers 
◆  Transistor has 3 legs, one of them is usually grounded. 
 ◆ Classify amplifiers by what is common (grounded). 

         Properties of Amplifiers  
         C E     C B    C C       
 Power gain      Y         Y         Y 
 Voltage gain      Y         Y         N 
 Current gain        Y          N        Y 
 Input impedance      ≈ 3.5 kΩ     ≈ 30 Ω     ≈ 500 kΩ 
 Output impedance      ≈ 200 kΩ     ≈ 3 MΩ    ≈ 35 Ω 
 Output voltage phase change  1800      none     none 

 

L5: Diodes and Transistors



 

K.K. Gan 14

●  Biasing Transistors  
 ◆  For an amplifier to work properly it must be biased on all the time, not just when a signal is present. 
 ◆  “On” means current is flowing through the transistor (therefore VBE ≈ 0.6-0.7 V). 
 ◆  We usually use a DC circuit (R1 and R2 in the circuit below) to achieve the biasing. 
   

●  Calculating the operating (DC or quiescent) point of a Common Emitter Amplifier: 

 ◆  We want to determine the operating (quiescent) point of the circuit. 
 ◆  This is a fancy way of saying what's VB, VE, VC, VCE, IC, IB, IE when the transistor is on, but Vin = 0. 
 ◆  The capacitors C1 and C2 are decoupling capacitors, they block DC voltages. 
 ◆  C3 is a bypass capacitor that provides the AC ground (common). 
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●  Crude Method for determining operating point when no spec sheets are available. 
 a.  Remember IB = IC/β and β ≈ 100 (typical value). 
  ☞  we can neglect the current into the base since it’s much smaller than IC or IE. 
 b.  If transistor is "working" then VBE ≈ 0.6-0.7 V (silicon transistor). 
 c.  Determine VB using R1 and R2 as a voltage divider 

      
 d.  Find VE using VB - VE = 0.6 V ⇒ VE = 3 V. 
 e.  IE = VE / R4 = 3V/12 kΩ = 2.5 mA. 
 f.  Use the approximation IC = IE ⇒ IC = 2.5 mA. 
 g.  VC = 15 V - IC R3 = 15 - 2.5 mA × 2.5 kΩ = 8.75 V. 
 h.  VCE = 8.75 - 3 = 5.75 V.   
 ☞  The voltages at every point in the circuit are now determined!!! 

€ 

VB = 15 V R2

R1 + R2
= 3.6 V
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●  Spec Sheet or Load line method  
 ☞  Much more accurate than previous method. 
 ◆  Load line is set of all possible values of IC vs. VCE for the circuit in hand. 
 ◆  Assume same circuit as previous page and we know R3 and R4.  
 ◆  If we neglect the base current, then 

 ◆  The above is a straight line in (IC, VCE) space.   
  ☞  This line is the load line. 
 ◆  Assume R3 + R4 = 3.75 kΩ, then we can plot the load line from the two limits: 
   IC = 0,  VCE = 15 V     and     VCE = 0, IC = 15 V/ 3.75 kΩ = 4 mA € 

15 = IC(R3 + R4 )+VCE
IC = 15 /(R3 + R4 )−VCE /(R3 + R4 )
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Spec. Sheet of 2N3904 transistor:
IC vs. VCE for various IB
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 ◆  We want the operating point to be in the linear region of the transistor 
  ☞  we want the output to be a linear representation of the input. 
 ◆  Pick the operating point such that for reasonable changes in VCE, IC 
  ☞  the circuit stays out of the non-linear region and has IC > 0.  
  ■  IC must be > 0 or transistor won't conduct current in the "correct" direction! 
  ■  If circuit is in nonlinear region then Vout is a distorted version of Vin. 
  ■  If circuit is in region where IC = 0 then Vout is "clipped". 
 ◆  If we pick IC = 2.5 mA as operating point 
  ■  VCE > 0.5 is the linear region. 
  ■  Usually pick IC to be in the middle of the linear region. 
  ☞  amp will respond the same way to symmetric (around operating point) output voltage swings.   
 ◆  If IC = 2.5 mA and IB = 10-11 µA 
  ☞  VCE = 5-6 V 
 ◆  Can now choose the values for resistors (R1, R2) to give the above voltages and currents. 
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●  Current Gain Calculation from Spec Sheet 
 ◆  We define current gain as: 
   G = ∆Iout / ∆Iin 
  ■  This quantity is often called β. 
  ■  In our example IB is the input and IC is the output. 
 ◆  If we are in the linear region (VCE > 0.5 V) and the base current changes from 5 to 10 µA 
  ☞  the collector current (IC) changes from ~ 1.1 to 2.2 mA. 
  ☞  G = (2.2 - 1.1 mA)/(10 - 5 µA) ≈ 200 
 ◆  Like almost all transistor parameters, the exact current gain depends on many parameters: 
  ■  frequency of input voltage 
  ■  VCE 
  ■  IC 
  ■  IB 
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