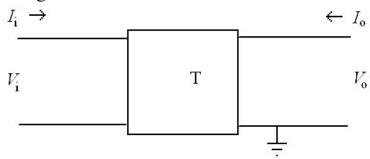
Lecture 7: Transistors and Amplifiers

Hybrid Transistor Model for small AC:

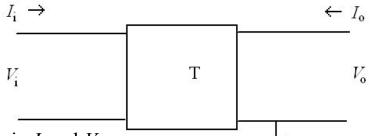
- The previous model for a transistor used one parameter (β , the current gain) to describe the transistor.
 - doesn't explain many features of three common forms of transistor amplifiers (common emitter etc.)
 - e.g. could not calculate the output impedance of the common emitter amp.
- Very often in electronics we describe complex circuits in terms of an equivalent circuit or model.
 - need a model that relates the input currents and voltages to the output currents and voltages.
 - the model needs to be linear in the currents and voltages.
 - For a transistor this condition of linearity is true for *small* signals.
- The most general linear model of the transistor is a 4-terminal "black box".



- In this model we assume the transistor is biased on properly and do not show the biasing circuit.
- Since a transistor has only 3 legs, one of the terminals is common between the input and output.
- There are 4 variables in the problem, I_i , V_i , I_o , and V_o .
 - The subscript i refer to the input side while the subscript o refers to the output side.
 - We assume that we know I_i and V_o .

• Kirchhoff's laws relate all the currents and voltages:

$$V_{i} = V_{i}(I_{i}, V_{o})$$
$$I_{o} = I_{o}(I_{i}, V_{o})$$



• For a linear model of the transistor with a small changes in I_i and V_o :

$$dV_{i} = \left(\frac{\partial V_{i}}{\partial I_{i}}\right)_{V_{o}} dI_{i} + \left(\frac{\partial V_{i}}{\partial V_{o}}\right)_{I_{i}} dV_{o}$$

$$dI_{o} = \left(\frac{\partial I_{o}}{\partial I_{i}}\right)_{V_{o}} dI_{i} + \left(\frac{\partial I_{o}}{\partial V_{o}}\right)_{I_{i}} dV_{o}$$

The partial derivatives are called the hybrid (or h) parameters:

$$dV_{i} = h_{ii} dI_{i} + h_{io} dV_{o}$$
$$dI_{o} = h_{oi} dI_{i} + h_{oo} dV_{o}$$

- h_{oi} and h_{io} are unitless
- hoo has units 1/Ω (mhos)
- h_{ii} has units Ω
- The four *h* parameters are easily measured.
 - e.g. to measure h_{ii} hold V_o (the output voltage) constant and measure V_{in}/I_{in} .
- Unfortunately the *h* parameters are not constant.
 - e.g. Figs. 11-14 of the 2N3904 spec sheet show the variation of the parameters with $I_{\rm C}$.

- There are 3 sets of the 4 hybrid parameters.
 - One for each type of amp: common emitter, common base, common collector
 - In order to differentiate one set of parameters from another the following notation is used:

First subscript

Second subscript

i = input impedance

e = common emitter

o = output admittance

b = common base

r = reverse voltage ratio

c = common collector

f = forward current ratio

For a common emitter amplifier we would write:

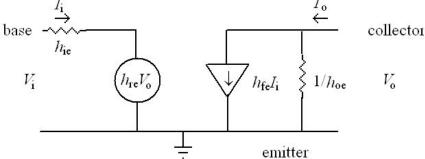
$$dV_{\rm i} = h_{\rm ie} dI_{\rm i} + h_{\rm re} dV_{\rm o}$$

$$dI_{\rm o} = h_{\rm fe} dI_{\rm i} + h_{\rm oe} dV_{\rm o}$$

• Typical values for the *h* parameters for a 2N3904 transistor in the common emitter configuration:

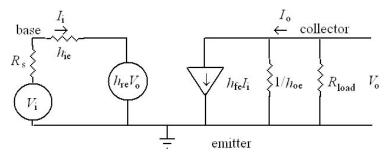
$$h_{\text{fe}} = 120, h_{\text{oe}} = 8.7 \times 10^{-6} \,\Omega^{-1}, h_{\text{ie}} = 3700 \,\Omega, h_{\text{re}} = 1.3 \times 10^{-4} \,\text{for} \,I_{\text{C}} = 1 \,\text{mA}$$

• The equivalent circuit for a transistor in the common emitter configuration looks like:



- Circle: voltage source
 - the voltage across this element is always equal to $h_{\rm re}V_{\rm o}$ independent of the current through it.
- Triangle: current source
 - the current through this element is always $h_{\rm fe}I_{\rm in}$ independent of the voltage across the device.

- We can use the model to calculate voltage/current gain and the input/output impedance of a CE amp.
- Equivalent circuit for a CE amp with a voltage source (with resistance R_s) and load resistor (R_{load}):



biasing network not shown

- Current gain: $G_{\rm I} = I_{\rm o}/I_{\rm in}$
 - Using Kirchhoff's current law at the output side we have:

$$h_{\rm fe}I_{\rm in} + V_{\rm o}h_{\rm oe} = I_{\rm o}$$

Using Kirchhoff's voltage rule at the output we have:

$$V_{o} = -I_{o}R_{load}$$

$$h_{fe}I_{in} = h_{oe}I_{o}R_{load} + I_{o}$$

$$G_{I} = I_{o}/I_{in} = h_{fe}/(1 + h_{oe}R_{load})$$

For typical CE amps, $h_{oe}R_{load} \ll 1$ and the gain reduces to familiar form:

$$G_{\rm I} \approx h_{\rm fe} = \beta$$

- Voltage gain: $G_v = V_o/V_{in}$
 - This gain can be derived in a similar fashion as the current gain:

$$G_{\rm V} = V_{\rm o} / V_{\rm in} = -h_{\rm fe} R_{\rm load} / (\Delta R_{\rm load} + h_{\rm ie})$$
 with $\Delta = h_{\rm ie} h_{\rm oe} - h_{\rm fe} h_{\rm re} \approx 10^{-2}$

This reduces to a familiar form for most cases where $\Delta R_{\text{load}} \ll h_{\text{ie}}$

$$G_{\rm V} = -h_{\rm fe}R_{\rm load}/h_{\rm ie} = -R_{\rm load}/r_{\rm BE}$$

L7: Transistors and Amplifiers

• Input Impedance: $Z_i = V_{in}/I_{in}$

$$Z_i = (\Delta R_{\text{load}} + h_{\text{ie}})/(1 + h_{\text{oe}} R_{\text{load}})$$

- This reduces to a familiar form for most cases where $\Delta R_{\text{load}} \ll h_{\text{ie}}$ and $h_{\text{oe}} R_{\text{load}} \ll 1$ $Z_{\text{i}} = h_{\text{ie}} = h_{\text{fe}} r_{\text{BE}}$
- $Z_{\rm i} = h_{\rm ie} = h_{\rm fe} r_{\rm BE}$ Output Impedance: $Z_{\rm o} = V_{\rm o}/I_{\rm o}$

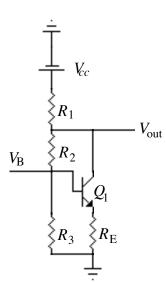
$$Z_{\rm o} = (R_{\rm s} + h_{\rm ie})/(\Delta + h_{\rm oe}R_{\rm s})$$

- Z_0 does not reduce to a simple expression.
- As the denominator is small, Z_0 is as advertised large.

Feedback and Amplifiers

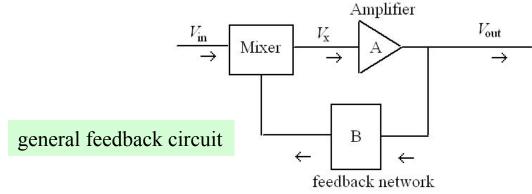
- Consider the common emitter amplifier shown.
 - This amp differs slightly from the CE amp we saw before:
 - bias resistor R_2 is connected to collector resistor R_1 instead of directly to V_{cc} .
 - How does this effect V_{out} ?
 - If V_{out} decreases (moves away from V_{cc})
 - I_2 increases
 - $V_{\rm B}$ decreases (gets closer to ground)
 - V_{out} will increase since $\Delta V_{\text{out}} = -\Delta V_{\text{B}} R_1 / R_{\text{E}}$
 - If V_{out} increases (moves towards V_{cc})
 - I_2 decreases
 - $V_{\rm B}$ increases (moves away from ground).
 - V_{out} will decrease since $\Delta V_{\text{out}} = -\Delta V_{\text{B}} R_1 / R_{\text{E}}$

This is an example of NEGATIVE FEEDBACK



- Negative Feedback is good:
 - Stabilizes amplifier against oscillation
 - Increases the input impedance of the amplifier
 - Decreases the output impedance of the amplifier
- Positive Feedback is bad:
 - Causes amplifiers to oscillate

Feedback Fundamentals:



• Without feedback the output and input are related by:

$$V_{\text{out}} = AV_{\text{in}}$$

- The feedback (box B) returns a portion of the output voltage to the amplifier through the "mixer".
 - The feedback network on the AM radio is the collector to base resistors (R_3, R_5)
- The input to the amplifier is:

$$V_{\rm x} = V_{\rm in} + BV_{\rm out}$$

• The gain with feedback is:

$$V_{\text{out}} = AV_{\text{x}} = A(V_{in} + BV_{\text{out}})$$

$$G = V_{\text{out}} / V_{\text{in}} = A / (1 - AB)$$

K.K. Gan

L7: Transistors and Amplifiers

A: open loop gain

Oscillation is a large fluctuation

of output signal with no input

AB: loop gain

G: closed loop gain

6

- Positive and negative feedback:
 - Lets define A > 0 (positive)

$$G = V_{\text{out}} / V_{\text{in}} = A / (1 - AB)$$

- Positive feedback, AB > 0:
 - As $AB \rightarrow 1$, $G \rightarrow \infty$.
 - circuit is unstable
 - oscillates if AB = 1
- Negative feedback, AB < 0:
 - As $A \rightarrow \infty$, an amazing thing happens:

$$|AB| \rightarrow \infty$$

 $|G| \rightarrow |1/B|$

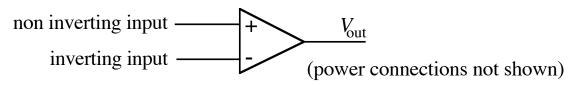
For large amplifier gain (A) the circuit properties are determined by the feedback loop.

- Example: $A = 10^5$ and B = -0.01 then G = 100.
- The stability of the gain is determined by the feedback loop (B) and not the amplifier (A).
- Example: *B* is held fixed at 0.01 and *A* varies:

- circuits can be made stable with respect to variations in the transistor characteristics as long as *B* is stable.
 - o B can be made from precision components such as resistors.

Operational Amplifiers (Op Amps)

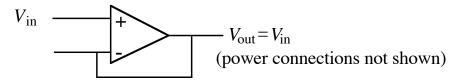
- Op amps are very high gain ($A = 10^5$) differential amplifiers.
 - Differential amp has two inputs (V_1, V_2) and output $V_{out} = A(V_1 V_2)$ where A is the amplifier gain.



- If an op amp is used without feedback and $V_1 \neq V_2$
 - $V_{\rm out}$ saturates at the power supply voltage (either positive or negative supply).
- Example: Assume the maximum output swing for an op amp is ± 15 V.
 - If there is no feedback in the circuit:
 - $V_{\text{out}} = 15 \text{ V if } V_{\text{non-invert}} > V_{\text{invert}}$
 - $V_{\text{out}} = -15 \text{ V if } V_{\text{non-invert}} < V_{\text{invert}}$
- Op amps are almost always used with negative feedback.
 - The output is connected to the (inverting) input.
- Op amps come in "chip" form. They are made up of complex circuits with 20-100 transistors.

Ideal Op Amp		Real Op Amp μA741	
Voltage gain (open loop)	∞	10^{5}	
Input impedance	∞	$2~\mathrm{M}\Omega$	
Output impedance	0	$75~\Omega$	
Slew rate	∞	$0.5 \text{ V/}\mu\text{sec}$	Slew rate is how fast output can change
Power consumption	0	50 mW	
V_{out} with $V_{in} = 0$	0	2 mV (unity gain)	
Price	0\$	\$0.25	
K K Gan	L7: Transistors and Amplifiers		8

- When working with op amps using negative feedback two simple rules (almost) always apply:
 - No current goes into the op amp.
 - This reflects the high input impedance of the op amp.
 - Both input terminals of the op amp have the same voltage.
 - This has to do with the actual circuitry making up the op amp.
- Some examples of op amp circuits with negative feedback:
 - Voltage Follower:

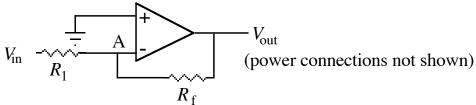


- The feedback network is just a wire connecting the output to the input.
- By rule #2, the inverting (-) input is also at $V_{\rm in}$.

$$V_{\text{out}} = V_{\text{in}}$$
.

- What good is this circuit?
 - Mainly as a buffer as it has high input impedance (MΩ) and low output impedance (100 Ω).

Inverting Amplifier:



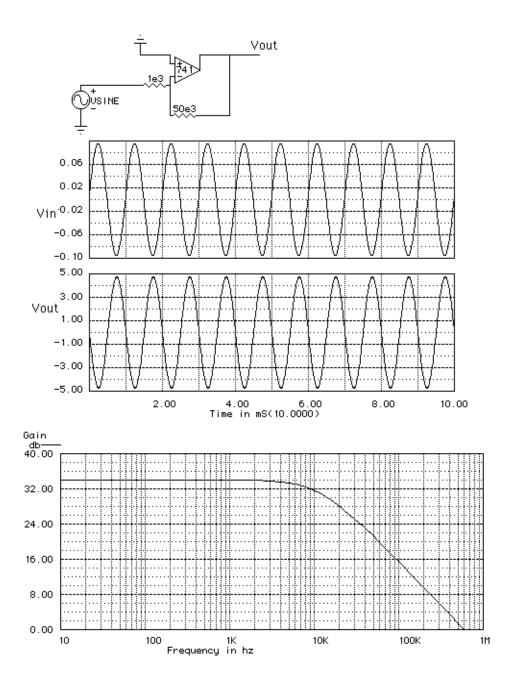
- By rule #2, point A is at ground.
- By Rule #1, no current is going into the op amp.
- We can redraw the circuit as:

$$V_{\rm in} \xrightarrow{I_{\rm in}} \xrightarrow{I_{\rm out}} V_{\rm out}$$

$$V_{\rm in}/R_1 + V_{\rm out}/R_{\rm f} = 0$$

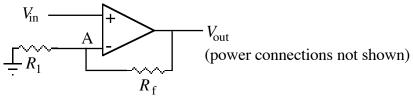
$$V_{\rm out} / V_{\rm in} = -R_{\rm f} / R_1$$

- The closed loop gain is R_f/R_1 .
- □ The minus sign in the gain means that the output has the opposite polarity as the input.



L7: Transistors and Amplifiers

Non-Inverting Amplifier:

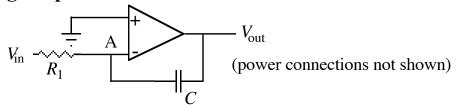


- By rule #2, point A is V_{in} .
- By Rule #1, no current is going into the op amp.
- We can redraw the circuit as:

$$\begin{array}{ccc}
I_{\text{in}} & \longrightarrow & V_{\text{in}} & \longleftarrow & I_{\text{out}} \\
& & \times & & \times & & \times & V_{\text{out}} \\
& & \times & & \times & & \times & & X_{\text{f}} \\
V_{\text{in}} / R_1 + (V_{\text{in}} - V_{\text{out}}) / R_f &= 0 \\
V_{\text{out}} / V_{\text{in}} &= (R_1 + R_f) / R_1
\end{array}$$

- The closed loop gain is $(R_1 + R_f) / R_1$.
- □ The output has the same polarity as the input.

• Integrating Amplifier:



Again, using the two rules for op amp circuits we redraw the circuit as:

$$V_{\text{in}} \xrightarrow{I_{\text{in}}} \xrightarrow{} \underbrace{\frac{I_{\text{out}}}{C}}_{C} V_{\text{out}}$$

$$\frac{V_{\text{in}}}{R_{1}} + \frac{dQ}{dt} = 0$$

$$\frac{V_{\text{in}}}{R_{1}} + C \frac{dV_{\text{out}}}{dt} = 0$$

$$V_{\text{out}} = \frac{-1}{CR_{1}} \int V_{\text{in}} dt$$

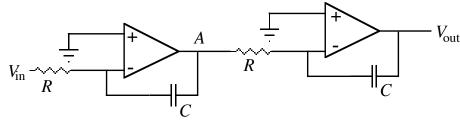
- The output voltage is related to the integral of the input voltage.
- \Box The negative sign in the gain means that $V_{\rm in}$ and $V_{\rm out}$ have opposite polarity.

Op Amps and Analog Calculations:

- Op amps were invented before transistors to perform analog calculations.
- Their main function was to solve differential equations in real time.
- **Example:** Suppose we wanted to solve the following:

$$\frac{d^2x}{dt^2} = g$$

- This describes a body under constant acceleration (gravity if $g = 9.8 \text{ m/s}^2$).
- The following circuit gives an output which is the solution to the differential equation:



- The input voltage is a constant (= g).
- For convenience we pick RC = 1.
- At point A:

$$V_{\rm A} = -\int V_{\rm in} dt = -\int \frac{d^2x}{dt^2} dt = -\frac{dx}{dt}$$

The output voltage (V_{out}) is the integral of V_{A} :

$$V_{\text{out}} = -\int V_{\text{A}} dt = \int \frac{dx}{dt} dt = x(t)$$

If we want non-zero boundary conditions (e.g. V(t = 0) = 1 m/s) we add a DC voltage at point A.