Physics 4700 HOMEWORK 2

Due September 26

1. Simpson Page 50, #32

Calculate I₁ and I₂.

2. This is a review problem on complex numbers. Manipulating complex numbers will become important when we discuss AC circuits.

Let
$$A = 2 + 4j$$

 $B = -1 + 3j$
 $C = 3 - 2j$

Find the magnitude and phase of,

- a. *A*, *B* and *C*b. (*A* + *B*)/*C*c. (2*A* − 3*B**)/(*A* − *C**), * = complex conjugate
- 3. A current of 1 mA charges a capacitor of 1 μ F capacitor. How long does it take the capacitor to reach 10V?

4. Simpson Page 103, #2

Prove that the root mean square (RMS) value of

$$V(t) = V_0 cos \omega t$$

is equal to $\frac{V_0}{\sqrt{2}}$. What is the RMS value of the voltage of Problem 1? Also calculate the V_{RMS} for the following waveforms:

5. Simpson Page 104, #10

Calculate the impedance Z_{AB} in the form a + jb and $|Z|e^{j\theta}$.

																					<mark>R</mark>																			
												C															 		•	~	~	/	_		•		_			
	A	Ċ				ĸ						Č.				B							1	4			2												B	
	_				~	^	\checkmark	~				┨┠					-						-			-						С						-		-
																											- 24					~					1			
																											- 3					ċ.					1			
																																┨┝┝								
																																ĻL.								

6. Simpson Page 104, #12

Calculate the impedance Z_{AB} in the form a + jb and $|Z|e^{j\theta}$.

										С										
						51		Ċ	1	Ĥ				0						
	Δ			ſ		s		÷		1 I	÷	~	-	÷	÷	٦			B	
	_	×															•	ं	_	
				Ī		D										T				
				L	_			~_		•		_			,-					
					.`		Ť.								1					

7. Simpson Page 105, #14

Design a low pass RC filter that will attenuate a 60 Hz sinusoidal voltage by 12 dB relative to the DC gain. Use a 100 Ω resistance. Explain in words why the low pass RC filter attenuates the high frequencies.

- 8. Simpson Page 105, #15. (The rise time is defined on page 107 of Simpson.) For a low pass RC filter prove that
 - a. at the frequency $\omega = 1/RC$ the voltage gain equals $0.707 = \frac{1}{\sqrt{2}}$.
 - b. the rise time of the output pulse equals 2.2RC for a zero time input pulse
- **9.** Draw the Thevenin equivalent circuit for the following two circuits: (note: the load resistor has already been taken out of the circuit, if it were in the circuit, it be across the V_{out} terminals).

10. Simpson Page 105, #23

For a high Q parallel RLC circuit prove that $Q = \omega_0 / \Delta \omega$, where ω_0 is the (angular) resonant frequency and $\Delta \omega$ is the width at the half power points.