Lecture 9: Digital Electronics

Introduction:

- We can classify the building blocks of a circuit or system as being either analog or digital in nature.
 - If we focus on voltage as the circuit parameter of interest:
 - Analog: The voltage can take on a range of voltages, e.g. any value between 0.1 and 2 Volts.
 - Digital: The voltage can have only two values, e.g. 0 or 5 Volts
 - We say the voltage is either on or off
 - Digital circuits are useful when we don't need a continuous range of voltage or current.
 - Examples: Representing numbers, binary logic, counting circuits.
 - Example: Represent base 10 numbers using the binary system:

 $\begin{array}{l} 2|_{10} = 10|_2 = 1 \ \text{x} \ 2^1 + 0 \ \text{x} \ 2^0 \\ 10|_{10} = 1010|_2 = 1 \ \text{x} \ 2^3 + 0 \ \text{x} \ 2^2 + 1 \ \text{x} \ 2^1 + 0 \ \text{x} \ 2^0 \end{array}$

- Digital circuits use standard voltages (or currents) to denote <u>ON</u> (high, 1) or <u>OFF</u> (low, 0).
 - These standards are called "Logic Families" and there are several families.
 - Two of the most popular families are:
 - TTL (Transistor-Transistor-Logic): ON = 5 Volts, OFF = 0 Volts
 - **ECL** (Emitter-Coupled-Logic): ON = -1 Volt, OFF = -1.6 Volts
 - For practical reasons both ON and OFF are given by a range of voltages or currents.
 - ON for an input to a circuit might have slightly different voltage than ON for an output to a circuit.

• A description of several logic families is given in the table below:

	Delay (ns)	Max. FF Rate (MHz)	Power/Gate (mW)	High (V)	Low (V)
Standard TTL (7400)	10	35	15	3.5	0.2
Low-power Schottky (74LS00)	9.0	33	2	3.5	0.2
Fast TTL (74F00)	3.5	125	5.5	2.7	0.5
CMOS 22 (74C00) 55	25 @ 10 V 50 @ 25 V	10 @ 10 V 3.5 @ 5 V	0.01	5-15	0
High-speed CMOS (74HC00)	8.0	40	0.01	2-6	0.1
ECL	2	250	25	-0.9	-1.8
100k ECL	0.75	500	40	-1.0	-1.7

• Advantages of Digital:

- only deal with two voltage levels (either ON or OFF)
- voltages (or currents) are standardized
- do not deal with individual transistors...
- Disadvantages of Digital:
 - too many "black" boxes
 - need good power supplies, clocks etc. for circuits to work properly

K.K. Gan

L9: Digital Electronics

Logic Gates:

- We want to make decisions based on digital information.
 - For now consider the basic building blocks with one or two inputs and one output.
- The basic logic units (gates) are: AND, OR, NOT.
 - These functions are defined by their truth tables.

Boolean Algebra or the Algebra of 1's and 0's

- Circuits consisting of logic gates are described by Boolean algebra.
 - Use of this algebra can greatly simplify circuit design, e.g. minimize the number of components.
- The following theorems can be proved using a truth table and the definition of OR, AND, and NOT.

1)
$$A + A = A, A + 1 = 1, A + 0 = A$$

2) $AA = A$
3) $AB = BA$
4) $ABC = (AB)C = A(BC)$
5) $A(B+C) = AB + AC$
6) $\overline{1} = 0, \overline{0} = 1$
7) $A + \overline{A} = 1, A\overline{A} = 0, A \cdot 1 = A$
8) $\overline{\overline{A}} = A$
9) $\overline{A + B} = \overline{A} \cdot \overline{B}$
10) $\overline{AB} = \overline{A} + \overline{B}$ DeMorgan's Theorem
Example using Boolean algebra:
• **Prove:** $X + YZ = (X + Y)(X + Z)$

Prove:
$$X + YZ = (X + Y)(X + Z)$$
 $(X + Y)(X + Z) = XX + XZ + YX + YZ$
 by 5)

 $= X + X(Z + Y) + YZ$
 by 2) and 5

 $= X(1 + Z + Y) + YZ$
 by 5)

 $= X + YZ$
 by 1)

K.K. Gan

L9: Digital Electronics

- We could also have proven the above using a truth table.
 - There are 8 (2^3) possible combinations of X, Y, Z.
 - For a large number of inputs using a truth table becomes unwieldy.
 - Example, if there are 10 inputs
 - \sim 2¹⁰ = 1024 possible combinations!
- Example: Exclusive $OR = XOR = A \oplus B$.
 - Output is high if inputs are different.

• How do we make an exclusive OR with AND, OR, and NOT gates?

L9: Digital Electronics

- Can we simplify this circuit with the use of less parts?
 - Use logical theorems:

- Usually there are many ways to synthesize the same function (circuit).
- Must decide if you want to minimize:
 - number of components
 - types of components
 - number of connections
 - power consumption
- For example we can make an XOR using only 4 NAND gates:

- Final example: Suppose you have a light controlled by 3 switches.
 - You want the light to be on if any one of the 3 switches is on or if all 3 switches are on.

Flip-Flops:

- Basic counting unit in computer:
 - counters
 - shift registers
 - memory
- Circuit whose output depends on the history of its inputs.
- Can make a flip-flop with just 2 transistors (or 2 vacuum tubes 1919!).
- Lots of different types of flip-flops (e.g. RS, JK, T, D).
- Example: RS flip-flop or <u>R</u>eset-<u>S</u>et flip-flop
 - Flip-flops, like logic gates are defined by their truth table.
 - Flip-flops are controlled by an external clock pulse.
 - All inputs and outputs are logic levels (e.g. TTL, ECL).
 - Can make an RSFF out of NOR gates:

- Q_n is the present state of the FF.
- Q_{n+1} will be the output after the clock enables the FF to look at its inputs (R and S).
- Many FF change state $(Q_n \rightarrow Q_{n+1})$ on the trailing edge of the clock.

The state with R = S = 1 is undefined. The output is not predictable!

K.K. Gan

L9: Digital Electronics

Ŷ

• Example: D flip-flop (Like RS but only one input)

- Example: JK flip-flop
 - JKFF is like the RSFF except that both inputs (J and K) can be high (1).

• Most JKFF's have a connection for forcing Q = 0 (clear) or forcing Q = 1 (preset).

• Example: T (*Toggle*) flip-flop

• T flip-flop is like the JKFF with both inputs (J and K) tied to each other.

- Flip-Flops are a class of circuits called "multivibrators"
 - Multivibrators are circuits with one or more stable states.
 - Monostable multivibrators (one shot) have one stable state.
 - If the circuit is forced out of its stable state (e.g. by an input pulse)
 - it eventually returns back to the stable state by itself.
 - Bistable multivibrators have two stable states.
 - **Transitions** between states occur only by an external action (e.g. voltage pulse for flip-flops).
 - Transition voltages can be different for the two states (e.g. Schmitt trigger).
 - Astable multivibrators are two-state devices which switch on their own accord.
 - Commonly used as oscillators.

- Example: Bistable Multivibrator.
 - This circuit has two stable states.
 - When either transistor conducts there is 4 mA flowing (by design) in the collector (I_{C1} or I_{C2}).
 - State 1: transistor 1 off, transistor 2 on

•
$$V_{C2} \approx 4 \text{ V}, V_{B2} \approx 5.5 \text{ V}, V_{E2} \approx 4 \text{ V}$$
 T₂ is saturated ($V_{CE} \approx 0$)

- Transition from state 1 to state 2:
 - Input pulse forces T_1 to conduct, T_1 conducting means that V_{C1} drops.
 - V_{C1} causes V_{B2} to drop to the point where T_2 is not conducting.
- State 2: transistor 1 on, transistor 2 off

•
$$V_{C1} \approx 4 \text{ V}, V_{B1} \approx 5.5 \text{ V}, V_{E1} \approx 4 \text{ V}$$
 $T_1 \text{ is saturated } (V_{CE} \approx 0)$

$$\Box V_{C2} \approx 11 \text{ V}, V_{B2} \approx 2 \text{ V}, V_{E2} \approx 4 \text{ V}$$

