Lecture 1
Probability and Statistics

Wikipedia:

- Benjamin Disraeli, British statesman and literary figure (1804 – 1881):
 - There are three kinds of lies: lies, damned lies, and statistics.
 - popularized in US by Mark Twain
 - the statement shows the persuasive power of numbers
 - use of statistics to bolster weak arguments
 - tendency of people to disparage statistics that do not support their positions

- The purpose of P3700:
 - how to understand the statistical uncertainty of observation/measurement
 - how to use statistics to argue against a weak argument (or bolster a weak argument?)
 - how to argue against people disparaging statistics that do not support their positions
 - how to lie with statistics?
Why there is statistical uncertainty?

- You sell 7 cryogenic equipment last month
 - You know how to count and 7 is the exact number of equipment sold
 - there is no uncertainty on 7!
 - However if you used the statistics of 7 to predict the future sale or compare with past sale
 - there is an uncertainty on “7”
 - the number of equipment sold could be 5, 8, or 10!
 - must include the uncertainty in the calculation
- What is the uncertainty on “7”?
 - Lecture 2: \(\sqrt{7} = 2.6 \)
 - there is a 68% chance that the expected number of equipment sold per month is 4.4-9.6
 - However the number of equipment sold per month is a discrete number
 - there is a ~68% chance that the expected number of equipment sold per month is 4-10
 - should use Poisson statistics as in Lecture 2 for more precise prediction
Introduction:

- Understanding of many physical phenomena depend on statistical and probabilistic concepts:
 - Statistical Mechanics (physics of systems composed of many parts: gases, liquids, solids.)
 - 1 mole of anything contains 6×10^{23} particles (Avogadro's number)
 - impossible to keep track of all 6×10^{23} particles even with the fastest computer imaginable
 - resort to learning about the group properties of all the particles
 - partition function: calculate energy, entropy, pressure... of a system
 - Quantum Mechanics (physics at the atomic or smaller scale)
 - wavefunction = probability amplitude
 - probability of an electron being located at (x,y,z) at a certain time.

- Understanding/interpretation of experimental data depend on statistical and probabilistic concepts:
 - how do we extract the best value of a quantity from a set of measurements?
 - how do we decide if our experiment is consistent/inconsistent with a given theory?
 - how do we decide if our experiment is internally consistent?
 - how do we decide if our experiment is consistent with other experiments?
 - In this course we will concentrate on the above experimental issues!
Definition of probability:

- Suppose we have \(N \) trials and a specified event occurs \(r \) times.
 - example: rolling a dice and the event could be rolling a 6.
- define probability \((P)\) of an event \((E)\) occurring as:
 \[P(E) = \frac{r}{N} \text{ when } N \to \infty \]
 - examples:
 - six sided dice: \(P(6) = \frac{1}{6} \)
 - coin toss: \(P(\text{heads}) = 0.5 \)
 - \(P(\text{heads}) \) should approach 0.5 the more times you toss the coin.
 - for a single coin toss we can never get \(P(\text{heads}) = 0.5! \)
- by definition probability is a non-negative real number bounded by \(0 \leq P \leq 1 \)
 - if \(P = 0 \) then the event never occurs
 - if \(P = 1 \) then the event always occurs
 - sum (or integral) of all probabilities if they are mutually exclusive must = 1.
 - events are independent if: \(P(A \cap B) = P(A)P(B) \)
 - coin tosses are independent events, the result of next toss does not depend on previous toss.
 - events are mutually exclusive (disjoint) if: \(P(A \cap B) = 0 \text{ or } P(A \cup B) = P(A) + P(B) \)
 - in coin tossing, we either get a head or a tail.
Probability can be a discrete or a continuous variable.

- **Discrete probability**: P can have certain values only.
 - **Examples**:
 - Tossing a six-sided dice: $P(x) = P_i$ here $x_i = 1, 2, 3, 4, 5, 6$ and $P_i = 1/6$ for all x_i.
 - Tossing a coin: only 2 choices, heads or tails.
 - For both of the above discrete examples (and in general) when we sum over all mutually exclusive possibilities:
 \[
 \sum_i P(x_i) = 1
 \]

- **Continuous probability**: P can be any number between 0 and 1.
 - Define a “probability density function”, $f(x)$
 \[
 f(x)dx = dP(x \leq \alpha \leq x + dx)
 \]
 with α a continuous variable
 - Probability for x to be in the range $a \leq x \leq b$ is:
 \[
 P(a \leq x \leq b) = \int_a^b f(x)dx
 \]
 - Just like the discrete case the sum of all probabilities must equal 1.
 \[
 \int_{-\infty}^{+\infty} f(x)dx = 1
 \]
 $f(x)$ is normalized to one.
 - Probability for x to be exactly some number is zero since:
 \[
 \int_{x=a}^{x=a} f(x)dx = 0
 \]
Examples of some common $P(x)$’s and $f(x)$’s:

- **Discrete =** $P(x)$
- **Continuous =** $f(x)$

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>binomial</td>
<td>uniform, i.e. constant</td>
<td>Poisson</td>
<td>Gaussian</td>
<td>exponential</td>
</tr>
<tr>
<td>chi square</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

How do we describe a probability distribution?

- mean, mode, median, and variance
- for a continuous distribution, these quantities are defined by:

<table>
<thead>
<tr>
<th>Mean</th>
<th>Mode</th>
<th>Median</th>
<th>Variance</th>
</tr>
</thead>
<tbody>
<tr>
<td>average</td>
<td>mode</td>
<td>50% point</td>
<td>width of distribution</td>
</tr>
<tr>
<td>$\mu = \int_{-\infty}^{\infty} xf(x)dx$</td>
<td>$\frac{\partial f(x)}{\partial x} \bigg</td>
<td>_{x=a} = 0$</td>
<td>$0.5 = \int_{-\infty}^{\infty} f(x)dx$</td>
</tr>
</tbody>
</table>

- for a discrete distribution, the mean and variance are defined by:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$
- Some continuous pdf:
 - Probability is the area under the curves!

For a Gaussian pdf, the mean, mode, and median are all at the same x.

For most pdfs, the mean, mode, and median are at different locations.
● Calculation of mean and variance:
 ◆ example: a discrete data set consisting of three numbers: {1, 2, 3}
 ★ average (μ) is just:
 \[\mu = \frac{\sum_{i=1}^{n} x_i}{n} = \frac{1 + 2 + 3}{3} = 2 \]
 ★ complication: suppose some measurement are more precise than others.
 ☞ if each measurement \(x_i \) have a weight \(w_i \) associated with it:
 \[\mu = \frac{\sum_{i=1}^{n} x_i w_i}{\sum_{i=1}^{n} w_i} \]
 “weighted average”
 ★ variance (\(\sigma^2 \)) or average squared deviation from the mean is just:
 \[\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2 \]
 variance describes the width of the pdf!
 ■ \(\sigma \) is called the standard deviation
 ☞ rewrite the above expression by expanding the summations:
 \[\sigma^2 = \frac{1}{n} \left[\sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} \mu^2 - 2\mu \sum_{i=1}^{n} x_i \right] \]
 \[= \frac{1}{n} \sum_{i=1}^{n} x_i^2 + \mu^2 - 2\mu^2 \]
 \[= \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \mu^2 \]
 \[= \langle x^2 \rangle - \langle x \rangle^2 \]
 \[<> \equiv \text{average} \]
 ■ \(n \) in the denominator would be \(n - 1 \) if we determined the average (\(\mu \)) from the data itself.
using the definition of μ from above we have for our example of $\{1,2,3\}$:
\[\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \mu^2 = 4.67 - 2^2 = 0.67 \]

the case where the measurements have different weights is more complicated:
\[\sigma^2 = \frac{\sum_{i=1}^{n} w_i (x_i - \mu)^2}{\sum_{i=1}^{n} w_i} = \frac{\sum_{i=1}^{n} w_i x_i^2}{\sum_{i=1}^{n} w_i} - \mu^2 \]
- μ is the weighted mean
- if we calculated μ from the data, σ^2 gets multiplied by a factor $n/(n-1)$.

example: a continuous probability distribution, $f(x) = \sin^2 x$ for $0 \leq x \leq 2\pi$
- has two modes!
- has same mean and median, but differ from the mode(s).

\[f(x) \text{ is not properly normalized: } \int_{0}^{2\pi} \sin^2 x \, dx = \pi \neq 1 \]

normalized pdf: $f(x) = \sin^2 x / \int_{0}^{2\pi} \sin^2 x \, dx = \frac{1}{\pi} \sin^2 x$
for continuous probability distributions, the mean, mode, and median are calculated using either integrals or derivatives:

\[\mu = \frac{1}{\pi} \int_{0}^{2\pi} x \sin^2 x \, dx = \pi \]

\[\text{mode} : \frac{\partial}{\partial x} \sin^2 x = 0 \Rightarrow \frac{\pi}{2}, \frac{3\pi}{2} \]

\[\text{median} : \frac{1}{\pi} \int_{0}^{\alpha} \sin^2 x \, dx = \frac{1}{2} \Rightarrow \alpha = \pi \]

example: Gaussian distribution function, a continuous probability distribution

\[p(x) = \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \text{ gaussian} \]

\(\sigma = \text{standard deviation} \)

68% of area within \(\pm \sigma \)
Accuracy and Precision:

- **Accuracy:** The accuracy of an experiment refers to how close the experimental measurement is to the true value of the quantity being measured.
- **Precision:** This refers to how well the experimental result has been determined, without regard to the true value of the quantity being measured.

- just because an experiment is precise it does not mean it is accurate!!
Measurement Errors (Uncertainties)

- Use results from probability and statistics as a way of indicating how “good” a measurement is.
 - most common quality indicator:
 - relative precision = [uncertainty of measurement]/measurement
 - * example: we measure a table to be 10 inches with uncertainty of 1 inch.
 relative precision = 1/10 = 0.1 or 10% (% relative precision)
 - uncertainty in measurement is usually square root of variance:
 $\sigma = \text{standard deviation}$
 - * usually calculated using the technique of “propagation of errors” (Lecture 4).

Statistics and Systematic Errors

- Results from experiments are often presented as:
 $N \pm XX \pm YY$
 - N: value of quantity measured (or determined) by experiment.
 - XX: statistical error, usually assumed to be from a Gaussian distribution.
 - with the assumption of Gaussian statistics we can say (calculate) something about how well our experiment agrees with other experiments and/or theories.
 - * Expect an 68% chance that the true value is between $N - XX$ and $N + XX$.
 - YY: systematic error. Hard to estimate, distribution of errors usually not known.
 - * examples: mass of proton = 0.9382769 \pm 0.0000027 GeV (only statistical error given)
 mass of W boson = 80.8 \pm 1.5 \pm 2.4 GeV
● What’s the difference between statistical and systematic errors?

\[N \pm XX \pm YY \]

- statistical errors are “random” in the sense that if we repeat the measurement enough times:
 \[XX \rightarrow 0 \]
- systematic errors do not \(\rightarrow 0 \) with repetition.
 - examples of sources of systematic errors:
 - voltmeter not calibrated properly
 - a ruler not the length we think is (meter stick might really be < meter!)
- because of systematic errors, an experimental result can be precise, but not accurate!

● How do we combine systematic and statistical errors to get one estimate of precision?

☞ big problem!

- two choices:
 - \(\sigma_{\text{tot}} = XX + YY \) add them linearly
 - \(\sigma_{\text{tot}} = (XX^2 + YY^2)^{1/2} \) add them in quadrature
 - widely accepted practice if \(XX \) and \(YY \) are not correlated
 - errors not of same origin, e.g. from the same voltmeter
 - smaller \(\sigma_{\text{tot}} \)!

● Some other ways of quoting experimental results

- lower limit: “the mass of particle \(X \) is > 100 GeV”
- upper limit: “the mass of particle \(X \) is < 100 GeV”
- asymmetric errors: mass of particle \(X = 100^{+4}_{-3} \) GeV
How to present your measured values:

- Don’t quote any measurement to more than three significant digits
 - three significant digits means you measure a quantity to 1 part in a thousand or 0.1% precision
 - difficult to achieve 0.1% precision
 - acceptable to quote more than three significant digits if you have a large data sample (e.g. large simulations)

- Don’t quote any uncertainty to more than two significant digits

- Measurement and uncertainty should have the same number of digits
 - 991 ± 57
 - 0.231 ± 0.013
 - $(5.98 \pm 0.43) \times 10^{-5}$

- follow this rule in the lab report!