Lecture 1 Probability and Statistics

Wikipedia:

- Benjamin Disraeli, British statesman and literary figure (1804 1881):
 - ★ There are three kinds of lies: lies, damned lies, and statistics.
 - popularized in US by Mark Twain
 - the statement shows the persuasive power of numbers
 - ☞ use of statistics to bolster weak arguments
 - tendency of people to disparage statistics that do not support their positions
- The purpose of P3700:
 - ★ how to understand the statistical uncertainty of observation/measurement
 - ★ how to use statistics to argue against a weak argument (or bolster a weak argument?)
 - ★ how to argue against people disparaging statistics that do not support their positions
 - ★ how to lie with statistics?

Why there is statistical uncertainty?

- You sell 7 cryogenic equipment last month
 - ★ You know how to count and 7 is the exact number of equipment sold
 - ☞ there is no uncertainty on 7!
 - ★ However if you used the statistics of 7 to predict the future sale or compare with past sale
 - ☞ there is an uncertainty on "7"
 - If the number of equipment sold could be 5, 8, or 10!
 - must include the uncertainty in the calculation
 - What is the uncertainty on "7"?
 - Lecture 2: $\sqrt{7} = 2.6$
 - there is a 68% chance that the expected number of equipment sold per month is 4.4-9.6
 - However the number of equipment sold per month is a discrete number
 - \sim there is a ~68% chance that the expected number of equipment sold per month is 4-10
 - should use Poisson statistics as in Lecture 2 for more precise prediction

Introduction:

- Understanding of many physical phenomena depend on statistical and probabilistic concepts:
 - * Statistical Mechanics (physics of systems composed of many parts: gases, liquids, solids.)
 - 1 mole of anything contains 6×10^{23} particles (Avogadro's number)
 - impossible to keep track of all $6x10^{23}$ particles even with the fastest computer imaginable
 - ☞ resort to learning about the group properties of all the particles
 - partition function: calculate energy, entropy, pressure... of a system
 - ★ Quantum Mechanics (physics at the atomic or smaller scale)
 - wavefunction = probability amplitude
 - \blacksquare probability of an electron being located at (x,y,z) at a certain time.
- Understanding/interpretation of experimental data depend on statistical and probabilistic concepts:
 - ★ how do we extract the best value of a quantity from a set of measurements?
 - ★ how do we decide if our experiment is consistent/inconsistent with a given theory?
 - ★ how do we decide if our experiment is internally consistent?
 - ★ how do we decide if our experiment is consistent with other experiments?
 - In this course we will concentrate on the above experimental issues!

Definition of probability:

- Suppose we have N trials and a specified event occurs r times.
 - \star example: rolling a dice and the event could be rolling a 6.
 - define probability (*P*) of an event (*E*) occurring as:

P(E) = r/N when $N \rightarrow \infty$

- ★ examples:
 - six sided dice: P(6) = 1/6
 - coin toss: P(heads) = 0.5
 - $\sim P(\text{heads})$ should approach 0.5 the more times you toss the coin.
 - for a single coin toss we can never get P(heads) = 0.5!
- by definition probability is a non-negative real number bounded by $0 \le P \le 1$
 - \star if P = 0 then the event never occurs
 - \star if P = 1 then the event always occurs
 - * sum (or integral) of all probabilities if they are mutually exclusive must = 1.
 - events are independent if: $P(A \cap B) = P(A)P(B)$

 \cap =intersection, \cup = union

- □ coin tosses are independent events, the result of next toss does not depend on previous toss.
- events are mutually exclusive (disjoint) if: $P(A \cap B) = 0$ or $P(A \cup B) = P(A) + P(B)$
 - \Box in coin tossing, we either get a head or a tail.

- Probability can be a discrete or a continuous variable.
 - Discrete probability: *P* can have certain values only.
 - ★ examples:
 - tossing a six-sided dice: $P(x_i) = P_i$ here $x_i = 1, 2, 3, 4, 5, 6$ and $P_i = 1/6$ for all x_i .
 - tossing a coin: only 2 choices, heads or tails.
 - ★ for both of the above discrete examples (and in general) when we sum over all mutually exclusive possibilities: $\sum P(x_i) = 1$
 - Continuous probability: P can be any number between 0 and 1.
 - ★ define a "probability density function", pdf, f(x)

$$f(x)dx = dP(x \le \alpha \le x + dx)$$
 with α a continuous variable

★ probability for x to be in the range $a \le x \le b$ is:

$$P(a \le x \le b) = \int_{a}^{b} f(x) dx$$

\star just like the discrete case the sum of all probabilities must equal 1.

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

- $rac{f(x)}{x}$ is normalized to one.
- \star probability for x to be exactly some number is zero since:

$$\int_{x=a}^{x=a} f(x) dx = 0$$

K.K. Gan

L1: Probability and Statistics

Notation: x_i is called a random variable • Examples of some common P(x)'s and f(x)'s:

$\underline{\text{Discrete}} = P(x)$	Continuous = f(x)	
binomial	uniform, i.e. constant	
Poisson	Gaussian	
	exponential	
	chi square	

- How do we describe a probability distribution?
 - mean, mode, median, and variance
 - for a continuous distribution, these quantities are defined by:

Mean	Mode	Median	Variance
average	most probable	50% point	width of distribution
$\mu = \int_{-\infty}^{+\infty} x f(x) dx$	$\frac{\partial f(x)}{\partial x}\bigg _{x=a} = 0$	$0.5 = \int_{-\infty}^{a} f(x) dx$	$\sigma^{2} = \int_{-\infty}^{+\infty} f(x) (x - \mu)^{2} dx$

• for a discrete distribution, the mean and variance are defined by:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} (x_i - \mu)^2$$

K.K. Gan

- Some continuous *pdf*:
 - Probability is the area under the curves!

- Calculation of mean and variance:
 - example: a <u>discrete data set</u> consisting of three numbers: {1, 2, 3}
 - ★ average (μ) is just:

$$\mu = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{1+2+3}{3} = 2$$

★ complication: suppose some measurement are more precise than others.

rightarrow if each measurement x_i have a weight w_i associated with it:

$$\mu = \sum_{i=1}^{n} x_i w_i / \sum_{i=1}^{n} w_i$$
 "weighted average"

***** variance (σ^2) or average squared deviation from the mean is just:

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$
 variance describes the width of

the pdf!

- σ is called the standard deviation
- rewrite the above expression by expanding the summations:

$$\sigma^{2} = \frac{1}{n} \left[\sum_{i=1}^{n} x_{i}^{2} + \sum_{i=1}^{n} \mu^{2} - 2\mu \sum_{i=1}^{n} x_{i} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} + \mu^{2} - 2\mu^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

$$= \left\langle x^{2} \right\rangle - \left\langle x \right\rangle^{2}$$
**Solution Solution Solution
**Solution Solution
Solution****

n in the denominator would be *n*-1 if we determined the average (μ) from the data itself.
 K.K. Gan
 L1: Probability and Statistics
 8

* using the definition of μ from above we have for our example of {1,2,3}:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^n x_i^2 - \mu^2 = 4.67 - 2^2 = 0.67$$

★ the case where the measurements have different weights is more complicated:

$$\sigma^{2} = \sum_{i=1}^{n} w_{i} (x_{i} - \mu)^{2} / \sum_{i=1}^{n} w_{i} = \sum_{i=1}^{n} w_{i} x_{i}^{2} / \sum_{i=1}^{n} w_{i} - \mu$$

- μ is the weighted mean
- if we calculated μ from the data, σ^2 gets multiplied by a factor n/(n-1).
- example: a <u>continuous probability distribution</u>, $f(x) = \sin^2 x$ for $0 \le x \le 2\pi$
 - ★ has two modes!
 - \star has same mean and median, but differ from the mode(s).

★ for continuous probability distributions, the mean, mode, and median are calculated using either integrals or derivatives:

$$\mu = \frac{1}{\pi} \int_{0}^{2\pi} x \sin^{2} x dx = \pi$$

mode: $\frac{\partial}{\partial x} \sin^{2} x = 0 \Rightarrow \frac{\pi}{2}, \frac{3\pi}{2}$
median: $\frac{1}{\pi} \int_{0}^{\alpha} \sin^{2} x dx = \frac{1}{2} \Rightarrow \alpha = \pi$

• example: Gaussian distribution function, a continuous probability distribution

Accuracy and Precision:

- Accuracy: The accuracy of an experiment refers to how close the experimental measurement is to the true value of the quantity being measured.
- Precision: This refers to how well the experimental result has been determined, without regard to the true value of the quantity being measured.
 - just because an experiment is precise it does not mean it is accurate!!

precise but not accurate

Measurement Errors (Uncertainties)

- Use results from probability and statistics as a way of indicating how "good" a measurement is.
 - most common quality indicator:

relative precision = [uncertainty of measurement]/measurement

 \star example: we measure a table to be 10 inches with uncertainty of 1 inch.

relative precision = 1/10 = 0.1 or 10% (% relative precision)

- uncertainty in measurement is usually square root of variance:
 - σ = standard deviation
 - ★ usually calculated using the technique of "propagation of errors" (Lecture 4).

Statistics and Systematic Errors

• Results from experiments are often presented as:

 $N \pm XX \pm YY$

- *N*: value of quantity measured (or determined) by experiment.
- *XX*: statistical error, usually assumed to be from a Gaussian distribution.
 - with the assumption of Gaussian statistics we can say (calculate) something about how well our experiment agrees with other experiments and/or theories.
 - ★ Expect an 68% chance that the true value is between N XX and N + XX.
- YY: systematic error. Hard to estimate, distribution of errors usually not known.
 - examples: mass of proton = 0.9382769 ± 0.0000027 GeV (only statistical error given)

```
mass of W boson = 80.8 \pm 1.5 \pm 2.4 \text{ GeV}
```

• What's the difference between statistical and systematic errors?

 $N \pm XX \pm YY$

- statistical errors are "random" in the sense that if we repeat the measurement enough times:
 XX -> 0
- systematic errors do not -> 0 with repetition.
 - ★ examples of sources of systematic errors:
 - voltmeter not calibrated properly
 - a ruler not the length we think is (meter stick might really be < meter!)
- because of systematic errors, an experimental result can be precise, but not accurate!
- How do we combine systematic and statistical errors to get one estimate of precision?
 - ☞ big problem!
 - two choices:
 - ★ $\sigma_{tot} = XX + YY$ add them linearly
 - ★ $\sigma_{\text{tot}} = (XX^2 + YY^2)^{1/2}$ add them in quadrature
 - widely accepted practice if *XX* and *YY* are not correlated
 - errors not of same origin, e.g. from the same voltmeter
 - \odot smaller $\sigma_{tot}!$
- Some other ways of quoting experimental results
 - lower limit: "the mass of particle X is > 100 GeV"
 - upper limit: "the mass of particle X is < 100 GeV"
 - asymmetric errors: mass of particle X = 100⁺⁴₋₃ GeV
 K.K. Gan L1: Probability and Statistics

How to present your measured values:

- Don't quote any measurement to more than three significant digits
 - three significant digits means you measure a quantity to 1 part in a thousand or 0.1% precision
 - difficult to achieve 0.1% precision
 - acceptable to quote more than three significant digits if you have a large data sample (e.g. large simulations)
- Don't quote any uncertainty to more than two significant digits
- Measurement and uncertainty should have the same number of digits
 - ◆ 991± 57
 - 0.231 ± 0.013
 - $(5.98 \pm 0.43) \times 10^{-5}$
- follow this rule in the lab report!