Lecture 2
Binomial and Poisson Probability Distributions

Binomial Probability Distribution
e Consider a situation where there are only two possible outcomes (a Bernoulli trial)
» Example:

+ flipping a coin James Bernoulli (Jacob I)

. born in Basel, Switzerland
« head or tail Dec. 27, 1654-Aug. 16, 1705
+ rolling a dice ) He is one 8 mathematicians
= 6ornot6 (ie.1,2,3,4,5) in the Bernoulli family
» Label the probability of a success as p (from Wikipedia).

« the probability for a failure is then g = 1- p
e Suppose we have N trials (e.g. we flip a coin N times)
= what is the probability to get m successes (= heads)?
e Consider tossing a coin twice. The possible outcomes are:
» noheads: P(m=0)=¢g?
» one head: P(m=1)=¢gp + pg (toss 1 is a tail, toss 2 is a head or toss 1 is head, toss 2 is a tail)

=2pq two outcomes because we don't care which of the tosses is a head
» two heads: P(m=2) = p?

« PO)+P(1)+P(2)=q*+2pg + p*= (g + pP=1
e We want the probability distribution function P(m, N, p) where:
m = number of success (e.g. number of heads in a coin toss)
N = number of trials (e.g. number of coin tosses)
p = probability for a success (e.g. 0.5 for a head)
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e If we look at the three choices for the coin flip example, each term is of the form:
C,p"g"" m=0,1,2,N=2 for our example, g =1 - p always!
» coefficient C,, takes into account the number of ways an outcome can occur regardless of order
» for m =0 or 2 there is only one way for the outcome (both tosses give heads or tails): Cy=C,=1
» form =1 (one head, two tosses) there are two ways that this can occur: C, = 2.
e Binomial coefficients: number of ways of taking N things m at time

CN,mz(TI:Il)— N!

 m! (N —m)!
» 0l=11=1,2!1=12=2,31=123=6,m! =1-2:3-m
» Order of things is not important
+ e.g.2 tosses, one head case (m=1)
m we don't care if toss 1 produced the head or if toss 2 produced the head
» Unordered groups such as our example are called combinations
» Ordered arrangements are called permutations
» For N distingui}si,t}able objects, if we want to group them m at a time, the number of permutations:
Pvm = (N —m)!
+ example: If we tossed a coin twice (N = 2), there are two ways for getting one head (m = 1)
+ example: Suppose we have 3 balls, one white, one red, and one blue.
m Number of possible pairs we could have, keeping track of order is 6 (rw, wr, rb, br, wb, bw):

3!
Py =——=6
327 (3 =2)!
m If order is not important (rw = wr), then the binomial formula gives
3!
C3, = 213 = 2)] =3 number of two-color combinations
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e Binomial distribution: the probability of m success out of N trials:

— m, N-m _ N m N-m _ N! m_ N—-m
+ pis probability of a success and g = 1 - p is probability of a failure
+ Consider a game where the player bats 4 times:

» probability of 0/4 = (0.67)* = 20%

% probability of 1/4 =[4!/(3!1!)](0.33)1(0.67)* = 40%
» probability of 2/4 = [4!/(2!2!)](0.33)%(0.67)?> = 29%
» probability of 3/4 = [4!/(1!3!)](0.33)3(0.67)! = 10%
» probability of 4/4 = [4!/(0!4!)](0.33)%(0.67)° = 1%
» probability of getting at least one hit=1 - P(0) =0.8
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To show that the binomial dist{{ibution is properly normalized, use Binomial Theorem:

(a + bk = z (llc) a®~tpt

=0

N N
> PNy =) (MpmeV =@+ )=
m=0 m=0

binomial distribution is properly normalized
Mean of binomial distribution:

Yh-omP(m N,p) _ N \
=0 ) )
H= Sy = 2, PN = ) m (et
m=0 NP m=0 m=0
A cute way of evaluating the above sum is to take the derivative:
N
g N m_ N-m
%Z( )p " =0
N N
m 1 N -m __ N m _ N-m-1 _
Zm Z(m)p (N —m)q =0
m=0 m=0
N N
-1 N m-—1 N -m _ _ z m _ N—-m __ _ —12 N m _ N—-m
p z m(m)p N —-p)~ (1-p) (1-p) m(m)p (1-p)
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e Variance of binomial distribution (obtained using similar trick):
2 _ Zih=o(m = 1)’P(m, N, p)
%=0 P (m’ N ) p)

»  Example: Suppose you observed m special events (success) in a sample of N events
+ measured probability (“efficiency”) for a special event to occur:
m

= Npq

€ =—
N
+ error on the probability ("error on the efficiency"):

__om _ {JNpq _Ne(l-e) _ |e(1-e)
N N N N
= sample (N) should be as large as possible to reduce uncertainty in the probability measurement

» Example: Suppose a baseball player's batting average is 0.33 (1 for 3 on average).

+ Consider the case where the player either gets a hit or makes an out (forget about walks here!).
probability for a hit: p=0.33
probability for “no hit”: g=1-p=0.67

+ On average how many hits does the player get in 100 at bats?
u=Np=100-0.33 =33 hits

+ What's the standard deviation for the number of hits in 100 at bats?
o= (Npg)"? = (100-:0.33:0.67)12 = 4.7 hits

= we expect = 33 = 5 hits per 100 at bats

O¢
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Poisson Probability Distribution
e A widely used discrete probability distribution
e Consider the following conditions:
» p1s very small and approaches 0
+ example: a 100 sided dice instead of a 6 sided dice, p = 1/100 instead of 1/6 =
+ example: a 1000 sided dice, p = 1/1000 Siméon Denis Poisson
» N 1is very large and approaches June 21, 1781-April 25, 1840
+ example: throwing 100 or 1000 dice instead of 2 dice
» product Np is finite
e Example: radioactive decay
» Suppose we have 25 mg of an element
« very large number of atoms: N = 10%°
» Suppose the lifetime of this element A = 10'? years = 5x10!° seconds
« probability of a given nucleus to decay in one second is very small: p = 1/A = 2x10-2%/sec
« Np = 2/sec finite!
= number of counts in a time interval 1s a Poisson process
e Poisson distribution can be derived by taking the appropriate limits of the binomial  distribution

N!
P(m,N,p) = — v m)!pmq""’"
N! _N(N—l)---(N—m+1)(N—m)!_Nm
(N —-—m)! (N —m)! B
2 — —m — 2
V™ = (1= p)V =1 —p(N —m) + 2 W m);v moD s 1—pN+(in,) +o=e PV
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Letu = Np

e Hu™m
P(m,u) = -

m=oo m=oo

e Hum um
Z =e H — = e H#e# =1 | Poisson distribution is normalized
m! m!
m=0 m=0
+ mis always an integer = 0
+ pdoes not have to be an integer
» It is easy to show that:
u = Np = mean of a Poisson distribution
o®> = Np = u = variance of a Poisson distribution
e Radioactivity example with an average of 2 decays/sec:
»  What’s the probability of zero decays in one second?
~290 -2
e “2 e “-1
P(0,2) = o - 1 e % =10.135 - 13.5%
*  What’s the probability of more than one decay in one second?
e -2 20 e -2 21
P(>12)=1-p0,2)—-p(1,2) =1- TR 1—e2—2e72=0.594 - 59.4%
» Estimate the most probable number of decays/sec?

mean and variance are the same number

0
%P(m, 1) = 0 to find m
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+ To solve this problem its convenient to maximize InP(m, u) instead of P(m, u).
e Hu™m

InP(m,u) = In [ — ]

+ In order to handle the factorial when take the derivative we use Stirling's Approximation:

= —u + m-Inu — Inm!

Inm! ~ m'Inm —m

0 0
—1InP(m,u) = 3 (—u +m-Inu — Inm!)

am
=%(—u+m-ln,u—m-lnm+m)
=Ing—Inm—m—+1
ny — Inm mm+
=0
m=u

« The most probable value for m is just the average of the distribution
= If you observed m events in an experiment, the error on m is ¢ = [l =/m
+_This is only approximate since Stirlings Approximation is only valid for large m.

+ Strictly speaking m can only take on integer values while u is not restricted to be an integer.
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Comparison of Binomial and Poisson distributions with mean p = 1
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For large N: Binomial distribution looks like a Poisson of the same mean
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