
Physics 4700 HOMEWORK 2

Due September 23

1. Simpson Page 50, #32

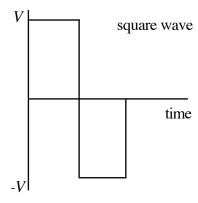
Calculate I₁ and I₂.

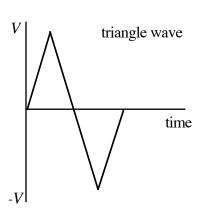
2. This is a review problem on complex numbers. Manipulating complex numbers will become important when we discuss AC circuits.

Let
$$A = 2 + 4j$$

$$B = -1 + 3j$$

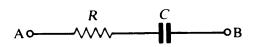
$$C = 3 - 2j$$

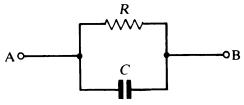

Find the magnitude and phase of,


a.
$$A, B \text{ and } C$$

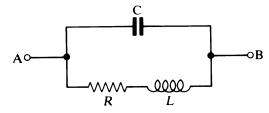
b.
$$(A+B)/C$$

c.
$$(2A - 3B^*)/(A - C^*)$$
, * = complex conjugate


- 3. A current of 1 mA charges a capacitor of 1 μF capacitor. How long does it take for the capacitor to reach 10 V?
- 4. Calculate the V_{RMS} for the following waveforms:

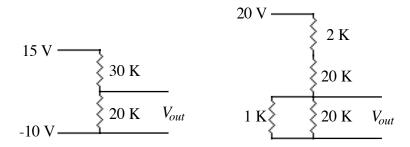


5. Simpson Page 104, #10


Calculate the impedance Z_{AB} in the form a + jb and $|Z|e^{j\theta}$.

6. Simpson Page 104, #12

Calculate the impedance Z_{AB} in the form a + jb and $|Z|e^{j\theta}$.


7. Simpson Page 105, #14

Design a low pass RC filter that will attenuate a 60 Hz sinusoidal voltage by 12 dB relative to the DC gain. Use a 100 Ω resistance. Explain in words why the low pass RC filter attenuates the high frequencies.

8. Simpson Page 105, #15. (The rise time is defined on page 107 of Simpson.)

For a low pass RC filter prove that

- a. at the frequency $\omega = 1/RC$ the voltage gain equals $0.707 = \frac{1}{\sqrt{2}}$.
- b. the rise time of the output pulse equals 2.2RC for a zero rise time input pulse
- **9.** Draw the Thevenin equivalent circuit for the following two circuits: (note: the load resistor has already been taken out of the circuit, if it were in the circuit, it be across the V_{out} terminals).

10. Simpson Page 105, #23

For a high Q parallel RLC circuit prove that $Q = \omega_0/\Delta\omega$, where ω_0 is the (angular) resonant frequency and $\Delta\omega$ is the width at the half power points.