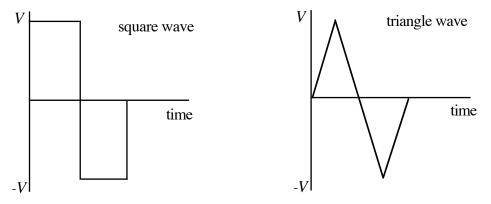
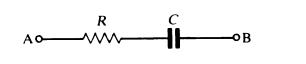

Physics 4700 HOMEWORK 2

Due September 28

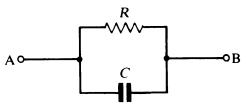
1. Calculate I_1 and I_2 .



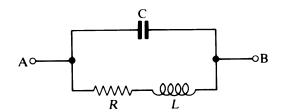
2. This is a review problem on complex numbers. Manipulating complex numbers will become important when we discuss AC circuits.


Let
$$A = 2 + 4j$$

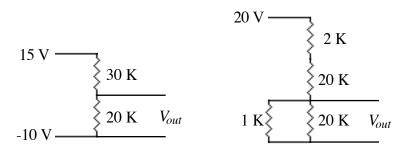
 $B = -1 + 3j$
 $C = 3 - 2j$


Find the magnitude and phase of,

- a. *A*, *B* and *C*b. (*A* + *B*)/*C*c. (2*A* − 3*B**)/(*A* − *C**), * = complex conjugate
- 3. A current of 1 mA charges a capacitor of 1 μ F capacitor. How long does it take for the capacitor to reach 10 V?
- 4. Calculate the V_{RMS} for the following waveforms:



5. Calculate the impedance Z_{AB} in the form a + jb and $|Z|e^{j\theta}$.



6. Calculate the impedance Z_{AB} in the form a + jb and $|Z|e^{j\theta}$.

- 7. Design a low pass RC filter that will attenuate a 60 Hz sinusoidal voltage by 12 dB relative to the DC gain. Use a 100 Ω resistance. Explain in words why the low pass RC filter attenuates the high frequencies.
- **8.** For a low pass RC filter prove that
 - a. at the frequency $\omega = 1/RC$ the voltage gain equals $0.707 = \frac{1}{\sqrt{2}}$.
 - **b.** the rise time of the output pulse equals 2.2RC for a zero rise time input pulse (Rise time is the time for a pulse to rise from 10% to 90% of the maximum value.)
- **9.** Draw the Thevenin equivalent circuit for the following two circuits: (note: the load resistor has already been taken out of the circuit, if it were in the circuit, it be across the V_{out} terminals).

10. For a high Q parallel RLC circuit prove that $Q = \omega_0 / \Delta \omega$, where ω_0 is the (angular) resonant frequency and $\Delta \omega$ is the width at the half power points.