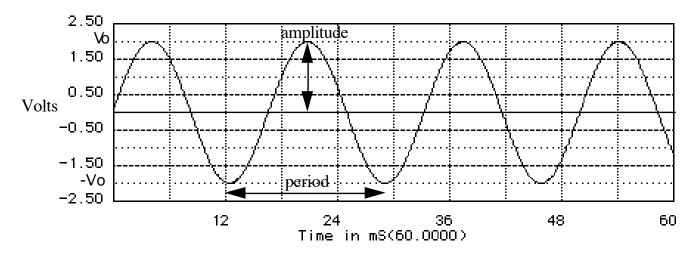
### **Lecture 3: R-L-C AC Circuits**

## **AC** (Alternative Current):

- Most of the time, we are interested in the voltage at a point in the circuit
  - will concentrate on voltages here rather than currents.
  - We encounter AC circuits whenever a periodic voltage is applied to a circuit.
  - The most common periodic voltage is in the form of a sine (or cosine) wave:

$$V(t) = V_0 \cos \omega t$$
 or  $V(t) = V_0 \sin \omega t$ 



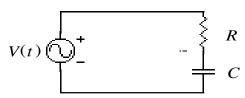
- $V_0$  is the *amplitude*:
  - $V_0 = \text{Peak Voltage } (V_P)$
  - □  $V_0 = 1/2$  Peak-to-Peak Voltage  $(V_{PP})$ 
    - $\circ$   $V_{PP}$ : easiest to read off scope
  - $V_0 = \sqrt{2} V_{RMS} = 1.41 V_{RMS}$ 
    - $\circ$   $V_{RMS}$ : what multimeters usually read
    - o multimeters also usually measure the RMS current

- $\bullet$  is the angular frequency:
  - $\omega = 2\pi f$ , with f = frequency of the waveform.
  - frequency (f) and period (T) are related by:  $T(\sec) = 1/f(\sec^{-1})$
- Household line voltage is usually 110-120  $V_{RMS}$  (156-170  $V_P$ ), f = 60 Hz.
- It is extremely important to be able to analyze circuits (systems) with sine or cosine inputs
  - Almost any waveform can be constructed from a sum of sines and cosines.
  - This is the "heart" of *Fourier analysis* (Simpson, Chapter 3).
  - The response of a circuit to a complicated waveform (e.g. a square wave) can be understood by analyzing individual sine or cosine components that make up the complicated waveform.
  - Usually only the first few components are important in determining the circuit's response to the input waveform.

#### **R-C Circuits and AC waveforms**

- There are many different techniques for solving AC circuits
  - All are based on Kirchhoff's laws.
  - When solving for voltage and/or current in an AC circuit we are really solving a differential eq.
  - Different circuit techniques are really just different ways of solving the same differential eq:
    - brute force solution to differential equation
    - complex numbers (algebra)
    - Laplace transforms (integrals)

- We will solve the following RC circuit using the brute force method and complex numbers method.
  - Let the input (driving) voltage be  $V(t) = V_0 \cos \omega t$  and we want to find  $V_R(t)$  and  $V_C(t)$ .



• Brute Force Method: Start with Kirchhoff's loop law:

$$V(t) = V_R(t) + V_C(t)$$

$$V_0 \cos \omega t = IR + Q/C$$

$$= RdQ(t)/dt + Q(t)/C$$

- We have to solve an inhomogeneous D.E.
- The usual way to solve such a D.E. is to assume the solution has the same form as the input:  $Q(t) = \alpha \sin \omega t + \beta \cos \omega t$ 
  - Plug our trial solution Q(t) back into the D.E.:

$$V_0 \cos \omega t = \alpha R \omega \cos \omega t - \beta R \omega \sin \omega t + (\alpha/C) \sin \omega t + (\beta/C) \cos \omega t$$

$$= (\alpha R \omega + \beta/C) \cos \omega t + (\alpha/C - \beta R \omega) \sin \omega t$$

$$V_0 = \alpha R \omega + \beta/C$$

$$\alpha/C = \beta R \omega$$

$$\alpha = \frac{RC^2 \omega V_0}{1 + (RC\omega)^2}$$

$$\beta = \frac{CV_0}{1 + (RC\omega)^2}$$
L3: R-L-C AC Circuits

• We can now write the solution for  $V_C(t)$ :

$$V_C(t) = Q/C$$

$$= (\alpha \sin \omega t + \beta \cos \omega t)/C$$

$$= \frac{RC\omega V_0}{1 + (RC\omega)^2} \sin \omega t + \frac{V_0}{1 + (RC\omega)^2} \cos \omega t$$

- We would like to rewrite the above solution in such a way that only a cosine term appears.
  - In this form we can compare it to the input voltage.

$$V_C(t) = \frac{V_0}{\sqrt{1 + (RC\omega)^2}} \left[ \frac{RC\omega}{\sqrt{1 + (RC\omega)^2}} \sin \omega t + \frac{1}{\sqrt{1 + (RC\omega)^2}} \cos \omega t \right]$$

- We get the above equation in terms of cosine only using the following basic trig:  $\cos(\theta_1 \theta_2) = \sin\theta_1 \sin\theta_2 + \cos\theta_1 \cos\theta_2$
- □ We can now define an angle such that:

$$\cos \phi = \frac{1}{\sqrt{1 + (RC\omega)^2}}$$

$$\sin \phi = \frac{RC\omega}{\sqrt{1 + (RC\omega)^2}}$$

$$\tan \phi = RC\omega$$

$$V_C(t) = \frac{V_0}{\sqrt{1 + (RC\omega)^2}} \cos(\omega t - \phi)$$

 $extbf{U}$   $V_C(t)$  and  $V_0(t)$  are out of phase.

Using the above expression for  $V_C(t)$ , we obtain:

$$V_R(t) = IR$$

$$= R \frac{dQ}{dt}$$

$$= RC \frac{dV_C}{dt}$$

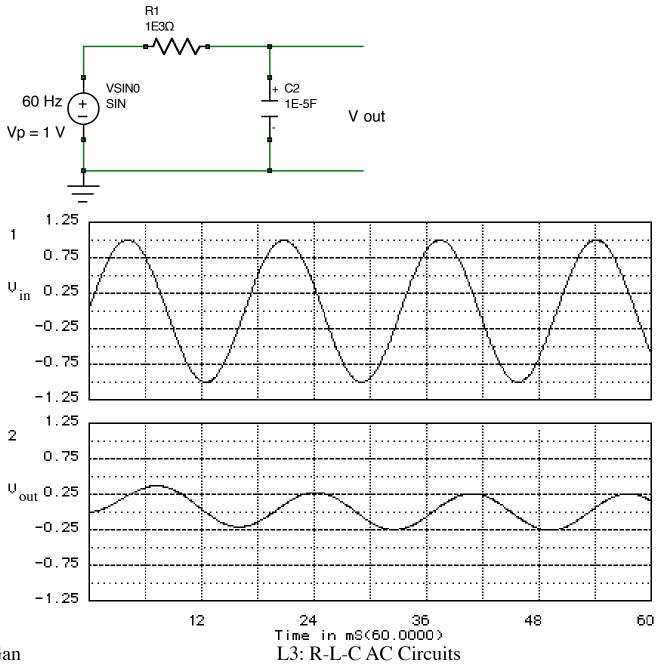
$$= \frac{-RC\omega V_o}{\sqrt{1 + (RC\omega)^2}} \sin(\omega t - \phi)$$

□ We would like to have cosines instead of sines by using:

$$-\sin\theta = \cos(\theta + \frac{\pi}{2})$$

- $V_C(t)$ ,  $V_R(t)$ , and I(t) are all out of phase with the applied voltage.
- I(t) and  $V_R(t)$  are in phase with each other.
- $V_C(t)$  and  $V_R(t)$  are out of phase by 90°.
- The amplitude of  $V_C(t)$  and  $V_R(t)$  depend on  $\omega$ .

# Example: RC Circuit



- Solving circuits with complex numbers:
  - PROS:
    - on't explicitly solve differential equations (lots of algebra).
    - acan find magnitude and phase of voltage separately.
  - CONS:
    - □ have to use complex numbers!
    - □ No "physics" in complex numbers.
  - What's a complex number? (see Simpson, Appendix E, P835)
    - Start with  $j = \sqrt{-1}$  (solution to  $x^2 + 1 = 0$ ).
    - □ A complex number can be written in two forms:
      - X = A + jB
      - □ A and B are real numbers
      - $X = R e^{j\phi}$ 
        - $R = (A^2 + B^2)^{1/2}$  and  $\tan \phi = B/A$  (remember  $e^{j\phi} = \cos \phi + j \sin \phi$ )
    - $\Box$  Define the complex conjugate of *X* as:

$$X^* = A - jB$$
 or  $X^* = R e^{-j\phi}$ 

 $\Box$  The magnitude of X can be found from:

$$|X| = (XX^*)^{1/2} = (X^*X)^{1/2} = (A^2 + B^2)^{1/2}$$

Suppose we have 2 complex numbers, X and Y with phases  $\alpha$  and  $\beta$  respectively,

$$Z = \frac{X}{Y} = \frac{|X|e^{j\alpha}}{|Y|e^{j\beta}} = \frac{|X|}{|Y|}e^{j(\alpha-\beta)}$$

- $\circ$  magnitude of Z: |X|/|Y|
- phase of  $Z: \alpha \beta$
- So why is this useful?

• Consider the case of the capacitor and AC voltage:

$$V(t) = V_0 \cos \omega t$$

$$= \operatorname{Re} \operatorname{al} \left( V_0 e^{j\omega t} \right)$$

$$Q = CV$$

$$I(t) = C \frac{dV}{dt}$$

$$= -C\omega V_0 \sin \omega t$$

$$= \operatorname{Re} \operatorname{al} \left( j\omega C V_0 e^{j\omega t} \right)$$

$$= \operatorname{Re} \operatorname{al} \left( \frac{V_0 e^{j\omega t}}{1/j\omega C} \right)$$

$$= \operatorname{Re} \operatorname{al} \left( \frac{V}{X_C} \right)$$

- V and  $X_C$  are complex numbers
- We now have Ohm's law for capacitors using the capacitive reactance  $X_C$ :

$$X_C = \frac{1}{j\omega C}$$

• We can make a similar case for the inductor:

$$V = L \frac{dI}{dt}$$

$$I(t) = \frac{1}{L} \int V \, dt$$

$$= \frac{1}{L} \int V_0 \cos \omega t \, dt$$

$$= \frac{V_0 \sin \omega t}{L \omega}$$

$$= \operatorname{Re} \operatorname{al} \left( \frac{V_0 e^{j\omega t}}{j\omega L} \right)$$

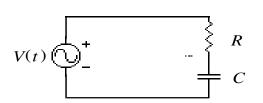
$$= \operatorname{Re} \operatorname{al} \left( \frac{V}{X_L} \right)$$

- V and  $X_L$  are complex numbers
- We now have Ohm's law for inductors using the inductive reactance  $X_L$ :  $X_L = j\omega L$
- $\bullet$   $X_C$  and  $X_L$  act like frequency dependent resistors.
  - They also have a *phase* associated with them due to their complex nature.
  - $X_L \Rightarrow 0$  as  $\omega \Rightarrow 0$  (short circuit, DC)
  - $X_L \Rightarrow \infty$  as  $\omega \Rightarrow \infty$  (open circuit)
  - $X_C \Rightarrow 0$  as  $\omega \Rightarrow \infty$  (short circuit)
  - $X_C \Rightarrow \infty \text{ as } \omega \Rightarrow 0 \text{ (open circuit, DC)}$

- Back to the RC circuit.
  - Allow voltages, currents, and charge to be complex:

$$V_{in} = V_0 \cos \omega t$$

$$= \operatorname{Real}(V_0 e^{j\omega t})$$



between applied voltage and the voltage across the capacitor  $(V_C)$ .

$$Q(t) = CV_C(t)$$

$$= Ae^{j(\omega t - \phi)}$$
Q and  $V_C$  are complex

- A and C are real
- We can find the complex current by differentiating the above:

$$I(t) = dQ(t)/dt$$

$$= j\omega A e^{j(\omega t - \phi)}$$

$$= j\omega Q(t)$$

$$= j\omega C V_C(t)$$

$$V_{in} = V_C + V_R$$

$$= V_C + IR$$

$$= V_C + j\omega C V_C R$$

$$V_C = \frac{V_{in}}{1 + j\omega RC}$$

$$= V_{in} \frac{\frac{1}{j\omega C}}{R + \frac{1}{j\omega C}}$$

$$= V_{in} \frac{X_C}{R + X_C}$$

- □ looks like a voltage divider equation!!!!!
- We can easily find the magnitude of  $V_C$ :

$$|V_C| = |V_{in}| \frac{|X_C|}{|R + X_C|}$$

$$= \frac{V_0 \frac{1}{\omega C}}{\sqrt{R^2 + (1/\omega C)^2}}$$

$$= \frac{V_0}{\sqrt{1 + (RC\omega)^2}}$$

 $\Box$  same as the result on page 4.

• Is this solution the same as what we had when we solved by brute force page 4?

$$V_C = \operatorname{Re} \operatorname{al} \left( \frac{V_{in}}{1 + j\omega RC} \right)$$

$$= \operatorname{Re} \operatorname{al} \left( \frac{V_0 e^{j\omega t}}{1 + j\omega RC} \right)$$

$$= \operatorname{Re} \operatorname{al} \left( \frac{V_0 e^{j\omega t}}{\sqrt{1 + (\omega RC)^2} e^{j\phi}} \right)$$

$$= \operatorname{Re} \operatorname{al} \left( \frac{V_0 e^{j(\omega t - \phi)}}{\sqrt{1 + (\omega RC)^2}} \right)$$

$$= \frac{V_0 \cos(\omega t - \phi)}{\sqrt{1 + (\omega RC)^2}}$$

YES the solutions are identical.

- We can now solve for the voltage across the resistor.
  - Start with the voltage divider equation in complex form:

$$V_R = \frac{V_{in}R}{R + X_C}$$

$$|V_R| = \frac{|V_{in}|R}{|R + X_C|}$$

$$= \frac{V_0R}{\sqrt{R^2 + (1/\omega C)^2}}$$

$$= \frac{V_0\omega RC}{\sqrt{1 + (\omega RC)^2}}$$

- This amplitude is the same as the brute force differential equation case!
- In adding complex voltages, we must take into account the phase difference between them.
  - the sum of the voltages at a given time satisfy:

$$V_0^2 = |V_R|^2 + |V_C|^2$$

$$V_0 = |V_R| + |V_C|$$

#### **R-C** Filters

- ♦ Allow us to select (reject) wanted (unwanted) signals on the basis of their frequency structure.
- Allow us to change the phase of the voltage or current in a circuit.
- lack Define the gain (G) or transfer (H) function of a circuit:
  - $G(j\omega) = H(j\omega) = V_{out}/V_{in}$  ( $j\omega$  is often denoted by s).
  - G is independent of time, but can depend on  $\omega$ , R, L, C.

• For an RC circuit we can define  $G_R$  and  $G_C$ :

$$R \quad G_R = \frac{V_R}{V_{in}} = \left| \frac{R}{R + X_C} \right| = \left| \frac{R}{R + 1/j \omega C} \right|$$

$$C \quad G_C = \frac{V_C}{V_{in}} = \left| \frac{X_C}{R + X_C} \right| = \left| \frac{1/j \omega C}{R + 1/j \omega C} \right|$$

 $\bullet$  We can categorize the G's as follows:

|                  | $G_R$                                  | $G_C$                                    |
|------------------|----------------------------------------|------------------------------------------|
| High Frequencies | ≈ 1, no phase shift high pass filter   | ≈ $1/j\omega CR \approx 0$ , phase shift |
| Low Frequencies  | ≈ $j\omega CR \approx 0$ , phase shift | ≈ 1, no phase shift low pass filter      |

- Decibels and Bode Plots:
  - Decibel (dB) describes voltage or power gain:

$$dB = 20 \log(V_{out}/V_{in})$$
$$= 10 \log(P_{out}/P_{in})$$

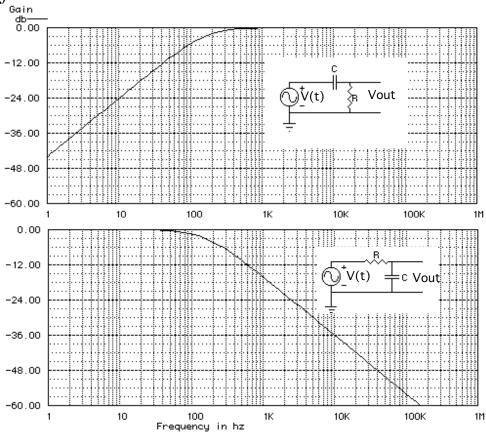
- $\blacksquare$  dB is always defined with respect to a baseline ( $P_{in}$ ).
- noise:  $P_{in}$  = softest sound a person can hear with normal hearing.
  - normal conversation: 60 dB
- Bode Plot is a log-log plot with dB on the y axis and  $log(\omega)$  or log(f) on the x axis.

- 3 dB point or 3 dB frequency:
  - also called break frequency, corner frequency, 1/2 power point
  - At the 3 dB point:

$$\frac{V_{out}}{V_{in}} = \frac{1}{\sqrt{2}} \quad \text{since } 3 = 20 \log(V_{out} / V_{in})$$

$$\frac{P_{out}}{P_{in}} = \frac{1}{2} \qquad \text{since } 3 = 10\log(P_{out}/P_{in})$$

 $\square$   $\omega RC = 1$  for high or low pass filter



L3: R-L-C AC Circuits

