Physics 3700 Problem Set 5 Due November 13, 2023

1) Suppose our variables x and y are related by:

$$y = \alpha x + \beta x^3$$

Assume we have n measurement pairs: $(x_i, y_i \pm \sigma)$ (all y's have the same uncertainty, σ). Use the method of Least Squares to derive formulas for the best estimate of α and β .

- 2) Taylor, Problem 8.14, page 202.
- 3) Two different experiments have measured the mass of the Ohio boson. Experiment #1 measured 1.00 ± 0.01 gm while experiment 2 measured 1.04 ± 0.02 gm.
- a) What is the best estimate of the mass of the Ohio boson if we combine the two experiments?
- b) Calculate the χ^2 for the two measurements in this problem using:

$$\chi^{2} = \sum_{i=1}^{2} \frac{(m_{i} - m)^{2}}{\sigma_{i}^{2}}$$

with m_i the measurement from experiment i and σ_i the standard deviation of the measurement, and m the best estimate of the mass obtained by combining the two experiments.

- c) How many degrees of freedom are there for this χ^2 ?
- d) What's the probability of getting a value of χ^2 per degree of freedom \geq to the one in this problem?
- 4) A set of *n* data points $(x_i, y_i \pm \sigma_i)$ are related by: y = A + 5x.
- a) Use the method of Least Squares to show that the best estimate of the intercept, A, is given by:

$$A = \frac{\sum_{i=1}^{n} y_{i} / \sigma_{i}^{2} - 5 \sum_{i=1}^{n} x_{i} / \sigma_{i}^{2}}{\sum_{i=1}^{n} 1 / \sigma_{i}^{2}}$$

b) Use propagation of errors to show that the variance of A is given by:

$$\sigma_A^2 = \frac{1}{\sum_{i=1}^n 1/\sigma_i^2}$$

- 5) Taylor, Problem 8.24, page 205.
- 6) Taylor, Problem 12.7, page 280. Give the value of the constraint for problems 12.2, 12.3, 12.4.
- 7) Taylor, Problem 12.8, page 280.