Lecture 1 Probability and Statistics

Introduction:

- Understanding of many physical phenomena depend on statistical and probabilistic concepts:
 - ★ Statistical Mechanics (physics of systems composed of many parts: gases, liquids, solids.)
 - 1 mole of anything contains $6x10^{23}$ particles (Avogadro's number)
 - \bullet impossible to keep track of all $6x10^{23}$ particles even with the fastest computer imaginable
 - resort to learning about the group properties of all the particles
 - partition function: calculate energy, entropy, pressure... of a system
 - ★ Quantum Mechanics (physics at the atomic or smaller scale)
 - wavefunction = probability amplitude
 - \blacksquare probability of an electron being located at (x,y,z) at a certain time.
- Understanding/interpretation of experimental data depend on statistical and probabilistic concepts:
 - ★ how do we extract the best value of a quantity from a set of measurements?
 - ★ how do we decide if our experiment is consistent/inconsistent with a given theory?
 - ★ how do we decide if our experiment is internally consistent?
 - ★ how do we decide if our experiment is consistent with other experiments?
 - In this course we will concentrate on the above experimental issues!

Definition of probability:

- Suppose we have N trials and a specified event occurs r times.
 - * example: rolling a dice and the event could be rolling a 6.
 - define probability (P) of an event (E) occurring as:

$$P(E) = r/N$$
 when $N \rightarrow \infty$

- ★ examples:
 - six sided dice: P(6) = 1/6
 - oin toss: P(heads) = 0.5
 - \sim P(heads) should approach 0.5 the more times you toss the coin.
 - for a single coin toss we can never get P(heads) = 0.5!
- by definition probability is a non-negative real number bounded by $0 \le P \le 1$
 - \star if P = 0 then the event never occurs
 - \star if P = 1 then the event always occurs
 - \star sum (or integral) of all probabilities if they are mutually exclusive must = 1.
 - events are independent if: $P(A \cap B) = P(A)P(B)$

∩=intersection, U= union

events are mutually exclusive (disjoint) if: $P(A \cap B) = 0$ or $\overline{P(A \cup B)} = P(A) + P(B)$

- Probability can be a discrete or a continuous variable.
 - Discrete probability: *P* can have certain values only.
 - ★ examples:
 - tossing a six-sided dice: $P(x_i) = P_i$ here $x_i = 1, 2, 3, 4, 5, 6$ and $P_i = 1/6$ for all x_i .
 - tossing a coin: only 2 choices, heads or tails.
 - ★ for both of the above discrete examples (and in general) when we sum over all mutually exclusive possibilities: $\sum P(x_i) = 1$

 x_i is called a random variable

Notation:

- Continuous probability: P can be any number between 0 and 1.
 - ★ define a "probability density function", pdf, f(x) $f(x)dx = dP(x \le \alpha \le x + dx)$ with α a continuous variable
 - ★ probability for x to be in the range $a \le x \le b$ is:

$$P(a \le x \le b) = \int_{a}^{b} f(x) dx$$

 \star just like the discrete case the sum of all probabilities must equal 1.

$$\int_{-\infty}^{+\infty} f(x) dx = 1$$

- f(x) is normalized to one.
- \star probability for x to be exactly some number is zero since:

$$\int_{x=a}^{x=a} f(x)dx = 0$$

• Examples of some common P(x)'s and f(x)'s:

 $\underline{\text{Discrete}} = P(x) \qquad \underline{\text{Continuous}} = f(x)$

binomial uniform, i.e. constant

Poisson Gaussian

exponential

chi square

- How do we describe a probability distribution?
 - mean, mode, median, and variance
 - for a continuous distribution, these quantities are defined by:

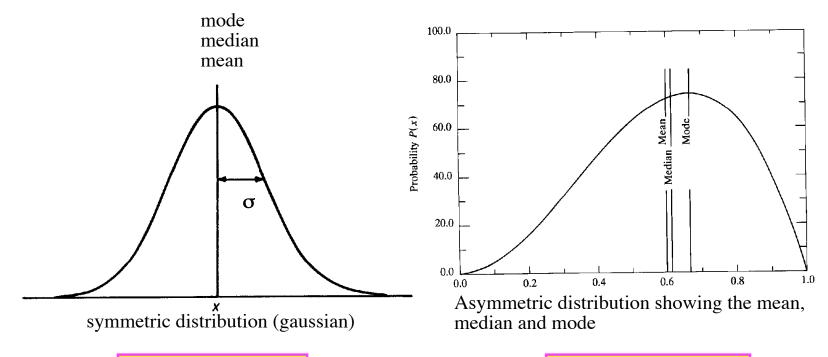
Mean	Mode	Median	Variance
average	most probable	50% point	width of distribution
$\mu = \int_{-\infty}^{+\infty} x f(x) dx$	$\left. \frac{\partial f(x)}{\partial x} \right _{x=a} = 0$	$0.5 = \int_{-\infty}^{a} f(x) dx$	$\sigma^2 = \int_{-\infty}^{+\infty} f(x) (x - \mu)^2 dx$

• for a discrete distribution, the mean and variance are defined by:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} x_i$$

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

• Some continuous *pdf*:



For a Gaussian pdf, the mean, mode, and median are all at the same x.

For most pdfs, the mean, mode, and median are at different locations.

- Calculation of mean and variance:
 - example: a discrete data set consisting of three numbers: {1, 2, 3}
 - \star average (μ) is just:

$$\mu = \sum_{i=1}^{n} \frac{x_i}{n} = \frac{1+2+3}{3} = 2$$

- ★ complication: suppose some measurement are more precise than others.
 - if each measurement x_i have a weight w_i associated with it:

$$\mu = \sum_{i=1}^{n} x_i w_i / \sum_{i=1}^{n} w_i$$

"weighted average"

* variance (σ^2) or average squared deviation from the mean is just:

$$\sigma^{2} = \frac{1}{n} \sum_{i=1}^{n} (x_{i} - \mu)^{2}$$

variance describes the width of the pdf!

- \bullet o is called the standard deviation
- rewrite the above expression by expanding the summations:

$$\sigma^{2} = \frac{1}{n} \left[\sum_{i=1}^{n} x_{i}^{2} + \sum_{i=1}^{n} \mu^{2} - 2\mu \sum_{i=1}^{n} x_{i} \right]$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} + \mu^{2} - 2\mu^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} x_{i}^{2} - \mu^{2}$$

$$= \left\langle x^{2} \right\rangle - \left\langle x \right\rangle^{2}$$
\(> \) \(\

 \blacksquare n in the denominator would be n -1 if we determined the average (μ) from the data itself.

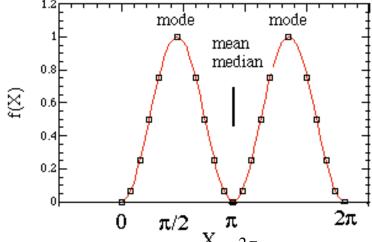
 \star using the definition of μ from above we have for our example of $\{1,2,3\}$:

$$\sigma^2 = \frac{1}{n} \sum_{i=1}^{n} x_i^2 - \mu^2 = 4.67 - 2^2 = 0.67$$

★ the case where the measurements have different weights is more complicated:

$$\sigma^{2} = \sum_{i=1}^{n} w_{i} (x_{i} - \mu)^{2} / \sum_{i=1}^{n} w_{i}^{2} = \sum_{i=1}^{n} w_{i} x_{i}^{2} / \sum_{i=1}^{n} w_{i}^{2} - \mu^{2}$$

- \blacksquare μ is the weighted mean
- if we calculated μ from the data, σ^2 gets multiplied by a factor n/(n-1).
- example: a continuous probability distribution, $f(x) = \sin^2 x$ for $0 \le x \le 2\pi$
 - ★ has two modes!
 - ★ has same mean and median, but differ from the mode(s).



★ f(x) is not properly normalized: $\int_{0}^{x} \sin^{2} x dx = \pi \neq 1$

normalized pdf: $f(x) = \sin^2 x / \int_0^{2\pi^0} \sin^2 x dx = \frac{1}{\pi} \sin^2 x$

K.K. Gan

L1: Probability and Statistics

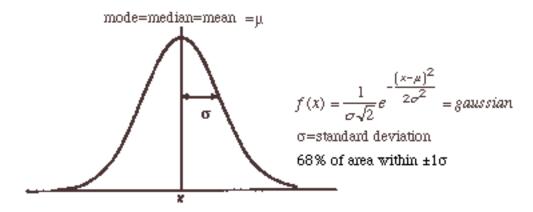
★ for continuous probability distributions, the mean, mode, and median are calculated using either integrals or derivatives:

$$\mu = \frac{1}{\pi} \int_{0}^{2\pi} x \sin^2 x dx = \pi$$

mode:
$$\frac{\partial}{\partial x} \sin^2 x = 0 \Rightarrow \frac{\pi}{2}, \frac{3\pi}{2}$$

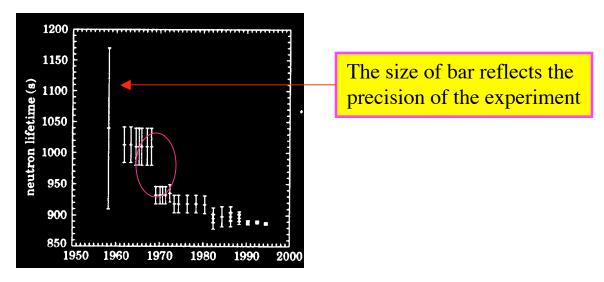
median:
$$\frac{1}{\pi} \int_{0}^{\alpha} \sin^{2} x dx = \frac{1}{2} \Rightarrow \alpha = \pi$$

• example: Gaussian distribution function, a continuous probability distribution



Accuracy and Precision:

- Accuracy: The accuracy of an experiment refers to how close the experimental measurement is to the true value of the quantity being measured.
- Precision: This refers to how well the experimental result has been determined, without regard to the true value of the quantity being measured.
 - just because an experiment is precise it does not mean it is accurate!!
 - measurements of the neutron lifetime over the years:



* steady increase in precision but any of these measurements accurate?

Measurement Errors (Uncertainties)

- Use results from probability and statistics as a way of indicating how "good" a measurement is.
 - most common quality indicator:
 relative precision = [uncertainty of measurement]/measurement
 - ★ example: we measure a table to be 10 inches with uncertainty of 1 inch. relative precision = 1/10 = 0.1 or 10% (% relative precision)
 - uncertainty in measurement is usually square root of variance:

 σ = standard deviation

★ usually calculated using the technique of "propagation of errors".

Statistics and Systematic Errors

• Results from experiments are often presented as:

$$N \pm XX \pm YY$$

N: value of quantity measured (or determined) by experiment.

XX: statistical error, usually assumed to be from a Gaussian distribution.

With the assumption of Gaussian statistics we can say (calculate) something about how well our experiment agrees with other experiments and/or theories.

Expect an 68% chance that the true value is between N - XX and N + XX.

YY: systematic error. Hard to estimate, distribution of errors usually not known.

• examples: mass of proton = 0.9382769 ± 0.0000027 GeV mass of W boson = $80.8 \pm 1.5 \pm 2.4$ GeV

- What's the difference between statistical and systematic errors?
 - statistical errors are "random" in the sense that if we repeat the measurement enough times: $XX \rightarrow 0$
 - systematic errors do not $\rightarrow 0$ with repetition.
 - * examples of sources of systematic errors:
 - voltmeter not calibrated properly
 - a ruler not the length we think is (meter stick might really be < meter!)
 - because of systematic errors, an experimental result can be precise, but not accurate!
- How do we combine systematic and statistical errors to get one estimate of precision?
 - big problem!
 - two choices:
 - \star $\sigma_{\text{tot}} = XX + YY$ add them linearly
 - \star $\sigma_{\text{tot}} = (XX^2 + YY^2)^{1/2}$ add them in quadrature
- Some other ways of quoting experimental results
 - lower limit: "the mass of particle X is > 100 GeV"
 - upper limit: "the mass of particle *X* is < 100 GeV"
 - asymmetric errors: mass of particle $X = 100^{+4}_{-3}$ GeV