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Lecture 4
Propagation of errors

Introduction
l Example: we measure the current (I) and resistance (R) of a resistor.

u Ohm's law:
V = IR

u If we know the uncertainties (e.g. standard deviations) in I and R, what is the uncertainty in V?
l Given a functional relationship between several measured variables (x, y, z),

u What is the uncertainty in Q if the uncertainties in x, y, and z are known?
n To answer this question we use a technique called Propagation of Errors.

u Usually when we talk about uncertainties in a measured variable such as x, we assume:
n the value of x represents the mean of a Gaussian distribution
n the uncertainty in x is the standard deviation (s) of the Gaussian distribution
n not all measurements can be represented by Gaussian distributions (more on that later)

Propagation of Error Formula
l  To calculate the variance in Q as a function of the variances in x and y we use the following:

u If the variables x and y are uncorrelated (sxy = 0), the last term in the above equation is zero.
u Assume we have several measurement of the quantities x (e.g. x1, x2...xN) and y (e.g. y1, y2...yN).

n The average of x and y:
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u define:
evaluated at the average values

u expand Qi about the average values:

u assume the measured values are close to the average values
+ neglect the higher order terms:

u If the measurements are uncorrelated
+ the summation in the above equation is zero
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u If x and y are correlated, define sxy as:

l Example: Power in an electric circuit.
P = I2R

u Let  I = 1.0 ± 0.1 amp and R = 10 ± 1 W
 + P = 10 watts

u calculate the variance in the power using propagation of errors

 + P = 10 ± 2 watts
 n If the true value of the power was 10 W and we measured it many times with

an uncertainty (s) of ± 2 W and Gaussian statistics apply
 + 68% of the measurements would lie in the range [8,12] W

u Sometimes its convenient to put the above calculation in terms of relative errors:

n the uncertainty in the current dominates the uncertainty in the power
+  current must be measured more precisely to greatly reduce the uncertainty in the power
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l Example: The error in the average.  
u The average of several measurements each with the same uncertainty (s) is given by:

+ We can determine the mean better by combining measurements.
+ The precision only increases as the square root of the number of measurements.

 n Do not confuse sm with s!  
 n s is related to the width of the pdf (e.g. Gaussian) that the measurements come from. 
 n s does not get smaller as we combine measurements.

Problem in the Propagation of Errors
l In calculating the variance using propagation of errors

u we usually assume the error in measured variable (e.g. x) is Gaussian
l If x is described by a Gaussian distribution

u f(x) may not be described by a Gaussian distribution!
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l What does the standard deviation that we calculate from propagation of errors mean?
u Example: The new distribution is Gaussian.

n Let y = Ax, with A = a constant and x a Gaussian variable.
+ my = Amx and sy = Asx

n Let the probability distribution for x be Gaussian:

+ The new probability distribution for y, p(y, my, sy), is also described by a Gaussian.
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u Example: When the new distribution is non-Gaussian: y = 2/x.
n The transformed probability distribution function for y does not have the form of a Gaussian.

l Unphysical situations can arise if we use the propagation of errors results blindly!
! u Example: Suppose we measure the volume of a cylinder: V = pR2L. 

n Let R = 1 cm exact, and L = 1.0 ± 0.5 cm.
n Using propagation of errors:

sV = pR2sL = p/2 cm3.
V = p ± p/2 cm3

! n If the error on V (sV) is to be interpreted in the Gaussian sense
+ finite probability (≈ 3%) that the volume (V) is < 0 since V is only 2s away from than 0!  
+ Clearly this is unphysical!
+ Care must be taken in interpreting the meaning of sV.
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