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Lecture 5
Maximum Likelihood Method
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l Suppose we are trying to measure the true value of some quantity (xT).
u We make repeated measurements of this quantity {x1, x2, … xn}.
u The standard way to estimate xT from our measurements is to calculate the mean value: 

+ set xT = mx.
+ DOES THIS PROCEDURE MAKE SENSE???
+ MLM: a general method for estimating parameters of interest from data.

l Statement of the Maximum Likelihood Method
u Assume we have made N measurements of x {x1, x2, … xn}.
u Assume we know the probability distribution function that describes x:  f(x, a).
u Assume we want to determine the parameter a.

+ MLM: pick a to maximize the probability of getting the measurements (the xi's) that we did!
l How do we use the MLM?

u The probability of measuring x1 is f(x1, a)dx
u The probability of measuring x2 is f(x2, a)dx
u The probability of measuring xn is f(xn, a)dx
u If the measurements are independent, the probability of getting the measurements we did is:

u We can drop the dxn term as it is only a proportionality constant 

 +
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u We want to pick the a that maximizes L:

u Both L and lnL have maximum at the same location.
+ maximize lnL rather than L itself because lnL converts the product into a summation.

+ new maximization condition:

n a could be an array of parameters (e.g. slope and intercept) or just a single variable.
n equations to determine a range from simple linear equations to coupled non-linear equations.

l Example:
u Let f(x, a) be given by a Gaussian distribution.
u Let a = m be the mean of the Gaussian.
u We want the best estimate of a from our set of n measurements {x1, x2, … xn}.
u Let’s assume that s is the same for each measurement.

u The likelihood function for this problem is:
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u Find a that maximizes the log likelihood function:

u If s are different for each data point
+ a  is just the weighted average:
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l Example
u Let f(x, a) be given by a Poisson distribution.
u Let a = m be the mean of the Poisson.
u We want the best estimate of a from our set of n measurements {x1, x2, … xn}.
u The likelihood function for this problem is:

u Find a that maximizes the log likelihood function:

Some general properties of the Maximum Likelihood Method
J For large data samples (large n) the likelihood function, L, approaches a Gaussian distribution.
J Maximum likelihood estimates are usually consistent.

+ For large n the estimates converge to the true value of the parameters we wish to determine.
J Maximum likelihood estimates are usually unbiased.

+ For all sample sizes the parameter of interest is calculated correctly.
J Maximum likelihood estimate is efficient: the estimate has the smallest variance.

  J Maximum likelihood estimate is sufficient: it uses all the information in the observations (the xi’s).
  J The solution from MLM is unique.
L Bad news: we must know the correct probability distribution for the problem at hand!
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Maximum Likelihood Fit of Data to a Function
l Suppose we have a set of n measurements:

u Assume each measurement error (s) is a standard deviation from a Gaussian pdf.
u Assume that for each measured value y, there’s an x which is known exactly.
u Suppose we know the functional relationship between the y’s and the x’s:

n a, b...are parameters.
+ MLM gives us a method to determine a, b... from our data.

l Example: Fitting data points to a straight line:

u Find a and b by maximizing the likelihood function L likelihood function:

x1,  y1 ± s1

x2,  y2 ± s2

...

⋅ xn ,  yn ± sn
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u Assume all s’s are the same for simplicity:

u We now have two equations that are linear in the two unknowns, a and b.

n We will see this problem again when we talk about “least squares” (“chi-square”) fitting.
l EXAMPLE:

u A trolley moves along a track at constant speed.  Suppose the following measurements of the
time vs. distance were made.  From the data find the best value for the speed (v) of the trolley.

u Our model of the motion of the trolley tells us that:
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u We want to find v, the slope (b) of the straight line describing the motion of the trolley.
u We need to evaluate the sums listed in the above formula:
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u The line best represents our data.
u Not all the data points are "on" the line.
u The line minimizes the sum of squares of the deviations between the line and our data (di):

MLM fit to the data for d = d0 + vt 
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