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Lecture 6
Chi Square Distribution (c2) and Least Squares Fitting

Chi Square Distribution (c2)
l Suppose:

u We have a set of measurements {x1, x2, … xn}.
u We know the true value of each xi (xt1, xt2, … xtn).

+ We would like some way to measure how good these measurements really are.
u Obviously the closer the (x1, x2, … xn)’s are to the (xt1, xt2, … xtn)’s,

+ the better (or more accurate) the measurements.
+ can we get more specific?

l Assume:
u The measurements are independent of each other.
u The measurements come from a Gaussian distribution.
u  (s1, s2 ... sn) be the standard deviation associated with each measurement.

l Consider the following two possible measures of the quality of the data:

u Which of the above gives more information on the quality of the data?
n Both R and c2 are zero if the measurements agree with the true value.
n R looks good because via the Central Limit Theorem as n Æ • the sum Æ Gaussian.

 n However, c2 is better!† 

R ≡
xi - xti
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u One can show that the probability distribution for c2 is exactly:

n This is called the "Chi Square" (c2) distribution.
H G is the Gamma Function:

n This is a continuous probability distribution that is a function of two variables:
H c2

H Number of degrees of freedom (dof):
n =  # of data points - # of parameters calculated from the data points

 r Example: We collected N events in an experiment.
m We histogram the data in n bins before performing a fit to the data points.
+ We have n data points!

r Example: We count cosmic ray events in 15 second intervals and sort the data into 5 bins:

m we have a total of 36 cosmic rays in 20 intervals
m we have only 5 data points
m Suppose we want to compare our data with the expectations of a Poisson distribution:

† 

p(c2,n) =
1

2n /2 G(n /2)
[c2 ]n /2-1e-c 2 /2 0 £ c2 £ •

23672Number of intervals

43210Number of counts in 15 second intervals

† 

G(x) ≡ e-t
0
•Ú t x-1dt      x > 0

G(n+1) = n!                n =1,2,3...
G(1

2) = p

† 

N = N0
e-mmm

m!
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+ Since we set N0 = 20 in order to make the comparison, we lost one degree of freedom:
n = 5 - 1 = 4

+ If we calculate the mean of the Poission from data, we lost another degree of freedom:
n = 5 - 2 = 3

 r Example: We have 10 data points.
m Let m and s be the mean and standard deviation of the data.
+ If we calculate m and s from the 10 data point then n = 8.
+ If we know m and calculate s then n = 9.
+ If we know s and calculate m then n = 9.
+ If we know m and s then n = 10.

n Like the Gaussian probability distribution, the probability integral cannot be done in closed form:

+ We must use to a table to find out the probability of exceeding certain c2  for a given dof

† 

P(c2 > a) = p(
a

•
Ú c2,n)dc2 =

1
2n /2G(n /2)

[c2 ]n /2-1e-c 2 /2dc2

a

•
Ú

For n ≥ 20, P(c2 > a) can be
approximated using a Gaussian pdf with
a = (2c2)1/2 - (2n-1)1/2

c2

P(c2 ,n)

n =
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n Example: What’s the probability to have c2 >10 with the number of degrees of freedom n = 4?
H Using Table D of Taylor we find P(c2  > 10, n = 4) = 0.04.
+ We say that the probability of getting a c2  > 10 with 4 degrees of freedom by chance is 4%.

n Some not so nice things about the c2 distribution:
H Given a set of data points two different functions can have the same value of c2.

+ Does not produce a unique form of solution or function.
H Does not look at the order of the data points.

+ Ignores trends in the data points.
H Ignores the sign of differences between the data points and “true” values.

+ Use only the square of the differences.
r There are other distributions/statistical test that do use the order of the points:

“run tests” and “Kolmogorov test”
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Least Squares Fitting
l Suppose we have n data points (xi, yi, si).

u Assume that we know a functional relationship between the points,

n Assume that for each yi we know xi exactly.
n The parameters a, b, … are constants that we wish to determine from our data points.

u A procedure to obtain a and b is to minimize the following c2 with respect to a and b.

n This is very similar to the Maximum Likelihood Method.
r For the Gaussian case MLM and LS are identical.
r Technically this is a c2 distribution only if the y’s are from a Gaussian distribution.
r Since most of the time the y’s are not from a Gaussian we call it “least squares” rather than c2.

l Example: We have a function with one unknown parameter:

Find b using the least squares technique.
u We need to minimize the following:

u To find the b that minimizes the above function, we do the following:

† 

y = f (x,a,b...)

† 

c2 =
[yi - f (xi ,a,b)]2

s i
2

i=1

n
Â

† 

f (x,b) =1+ bx

† 

c2 =
[yi - f (xi ,a,b)]2

s i
2

i=1

n
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u Each measured data point (yi) is allowed to have a different standard deviation (si).
l LS technique can be generalized to two or more parameters

for simple and complicated (e.g. non-linear) functions.
u One especially nice case is a polynomial function that is linear in the unknowns (ai):

n We can always recast problem in terms of solving n simultaneous linear equations.
+ We use the techniques from linear algebra and invert an n x n matrix to find the ai’s!

l Example: Given the following data perform a least squares fit to find the value of b.

u Using the above expression for b we calculate:
b = 1.05

† 

b =

yixi
s i

2
i=1

n
Â -

xi
s i

2
i=1

n
Â

xi
2

s i
2

i=1

n
Â

† 

f (x,a1...an ) = a1 + a2x + a3x2 + an xn-1

† 

f (x,b) =1+ bx

0.10.30.40.2s

5.24.32.92.2y

4.03.02.01.0x
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u A plot of the data points and the line from the least squares fit:

u If we assume that the data points are from a Gaussian distribution,
+ we can calculate a c2 and the probability associated with the fit.

n From Table D of Taylor:
+ The probability to get c2 > 1.04 for 3 degrees of freedom ≈ 80%.
+ We call this a "good" fit since the probability is close to 100%.

n If however the c2 was large (e.g. 15),
+ the probability would be small (≈ 0.2% for 3 dof).
+ we say this was a "bad" fit.
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RULE OF THUMB
A "good" fit has c2 /dof ≤ 1


