K.K. Gan Physics 416 Problem Set 2

Due Tuesday, April 21, 2009

- 1) Assuming a Gaussian probability distribution answer the following questions (Use Tables in *Taylor Appendix A and/or B*):
 - a) What is the probability of a value lying more than 1.5σ from the mean?
 - b) What is the probability of a value lying $\geq 1.5\sigma$ above the mean?
 - c) What is the probability of a value lying $\leq 1.5\sigma$ below the mean?
 - d) What is the probability of a value, y, lying in the range $\mu \sigma \le y \le \mu + 2\sigma$?
 - e) What is the probability of a value, y, lying in the range $\mu + \sigma \le y \le \mu + 2\sigma$?

For this problem μ is the mean of the Gaussian and σ is its standard deviation.

- 2) Taylor, Problem 5.12, page 156.
- 3) The sun emits an enormous number of neutrinos. Assume that 10^6 solar neutrinos uniformly pass through a square with an area of 1 m² each μ sec. Inside the square is a neutrino detector with an area of 1 mm². Assume Poisson statistics for this problem.
 - a) What is the average number of neutrinos going through the detector each usec?
 - b) What is the probability that no neutrinos go through the detector in a usec?
 - c) What is the probability that ≥ 2 neutrinos go through the particle detector in a usec?
 - d) How big should the detector be (in mm²) if we want \geq 2 particles per μ sec to pass through the detector with a probability of 95%?
- 4) Suppose a missile defense system destroys an incoming missile 95% of the time.
 - a) If an evil country launches 20 missiles what is the probability that the missile defense system will destroy all of the incoming missiles?
 - b) How many missiles have to be launched to have a 50% chance of at least one missile making it through the defense system?

Note: this problem can be done using either binomial or Poisson statistics.

- 5) According to quantum mechanics, the position (x) of a particle in a one dimensional box with dimensions $L/2 \le x \le L/2$ (L constant) can be described by the following probability distribution function p(x):
 - $p(x) = A\cos^2[\pi x/L]$ for $-L/2 \le x \le L/2$, and 0 for all other x.
- a) Find the normalization constant A in terms of L.
- b) Find the mean, mode, and median position of the particle in the box.
- c) Show that the variance (σ^2) of x is given by:

$$\sigma^2 = \left(\frac{L}{\pi}\right)^2 \frac{\pi^2 - 6}{12}$$

- d) What is the probability of finding the particle in the region: $L/4 \le x \le L/2$?
- 6) In the Bohr theory of the structure of the hydrogen atom the energies of the various quantum states are given by:

$$E_n = -\frac{me^4}{2N^2\hbar^2}$$

With: m the mass of the electron e the electric charge of the electron \hbar Planck's constant divided by 2π If: $\sigma_m/m = 0.1\%$ (i.e. the mass is known to 0.1%) $\sigma_e/e = 0.2\%$ (i.e. the charge is known to 0.2%) $\sigma_\hbar/\hbar = 0.1\%$

- a) Calculate σ_E/E for arbitrary N.
- b) If the precision of σ_E/E is to be improved which of the three quantities should be determined more precisely?
- 7) Suppose 100 six sided dice are tossed. Assume that the faces are labeled by one through six dots. Let Y_i be the number of dots on the ith (i =1 to 100) die.
- a) What is the average number of dots expected for a single dice?
- b) What is the variance of the numbers of dots expected for a single dice?
- c) Use the Central Limit Theorem to estimate the probability that the sum of the Y_i 's exceeds 400.
- 8) A Central Limit Theorem problem. When a certain chemical product is prepared the amount of a certain impurity is a random variable with a mean of 4 grams and a standard deviation of 2 grams. If 100 independent batches of the chemical are produced what is the (approximate) probability of the average amount of the impurity in the 100-batch sample being more that 4.5 grams?