
RLC series circuit:
● What's VR? 

 ◆  Simplest way to solve for V is to use voltage divider equation in complex notation: 
  

   
  

 
 
 

 ◆  Using complex notation for the apply voltage Vin = V0cosωt = Real(V0 e jωt ): 
 
 
 

■  We are interested in the both the magnitude of VR and its phase with respect to Vin. 
■  First the magnitude: 
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  ■  The phase of VR with respect to Vin can be found by writing VR in purely polar notation. 
   ❑  For the denominator we have: 

 
 
 
 

   ❑  Define the phase angle φ : 
      

 
 
 
 

   ❑  We can now write for VR in complex form: 
 
 
 
 
 

■ Finally, we can write down the solution for V by taking the real part of the above equation: 
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Depending on L, C, and ω, the phase angle can be 
positive or negative!  In this example, if ωL > 1/ωC, 
then VR(t) lags Vin(t). 
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◆  VR << Vin  at 100 Hz. 
◆  VR and Vin are not in phase at this frequency. 
◆  The little wiggles on VR are real! 

 ■  Transient solution (homogeneous solution) to the differential eq. describing the circuit.   
 ■ After a few cycles this contribution to VR die out. 
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R = 100 Ω, L = 0.1 H, C = 0.1 µF 
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Bode plot of magnitude 
of VR/Vin vs. frequency 



◆ In general VC(t), VR(t), and VL(t) are all out of phase with the applied voltage. 
◆ I(t) and VR(t) are in phase in a series RLC circuit. 
◆ The amplitude of VC, VR, and VL depend on ω.      
◆ The table below summarizes the 3 cases with the following definitions: 

   
 
 
 
 
 
 

● RLC circuits are resonant circuits 
 ◆  energy in the system “resonates” between the inductor and capacitor  
 ◆ “ideal” capacitors and inductors do not dissipate energy 
 ◆ resistors dissipate energy i.e. resistors do not store energy 

 

Gain Magnitude Phase

VR/Vin R/Z -φ

VL/Vin ωL/Z π/2 - φ

VC/Vin 1/ωCZ -π/2 - φ
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Z = R2 + (ωL −1/ωC)2[ ]
1/2

tanφ = (ωL −1/ωC) /R
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● Resonant Frequency: 
 ◆  At the resonant frequency the imaginary part of the impedance vanishes. 
 ◆  For the series RLC circuit the impedance (Z) is: 
  

 
 

 ◆  At resonance (series, parallel etc): 

 ◆  At the resonant frequency the following are true for a series RLC circuit: 
  ■  |VR| is maximum (ideally = Vin)   
  ■  φ = 0 

 

  ■   
 

  ☞  The circuit acts like a narrow band pass filter. 
 

● There is an exact analogy between an RLC circuit and a harmonic oscillator (mass attached to spring):  
 

 ◆   
 

 ◆   
 

 ◆  x ⇔ q (electric charge),  L ⇔ m,   k ⇔ 1/C 
 ◆  B (coefficient of damping) ⇔ R 
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● Q (quality factor) of a circuit: determines how well the RLC circuit stores energy 
 ◆  Q = 2π (max energy stored)/(energy lost) per cycle 
 ◆  Q is related to sharpness of the resonance peak: 
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◆ The maximum energy stored in the inductor is LI2/2 with I = IMAX.  
  ■  no energy is stored in the capacitor at this instant because I and VC are 900 out of phase. 

■ The energy lost in one cycle: 

    

■ There is another popular, equivalent expression for Q 
   

 
   ❑ ωU (ωL) is the upper (lower) 3 dB frequency of the resonance curve. 
    ❍  Q is related to sharpness of the resonance peak.   
   ❑ Will skip the derivation here as it involves a bit of algebra.   
    ❍ two crucial points of the derivation: 
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at the upper and lower 3 dB points



● Q can be measured from the shape of the resonance curve 
 ■ one does not need to know R, L, or C to find Q! 

 
 
 
 
 
 
 
 
 

 
 

● Example: Audio filter (band pass filter)
■ Audio filter is matched to the frequency range of the ear (20-20,000 Hz). 
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● Let's design an audio filter using low and high pass RC circuits. 

◆ Ideally, the frequency response is flat over 20-20,000 Hz, and 
  rolls off sharply at frequencies below 20 Hz and above 20,000 Hz. 
  ■ Set 3 dB points as follows: 
   ❑ lower 3 dB point : 20 Hz = 1/2πR1C1

❑ upper 3 dB point:  2x104 Hz = 1/2πR2C2 
■ If we put these two filters together we don't want the 2nd stage to affect the 1st stage. 

   ❑  can accomplish this by making the impedance of the 2nd (Z2) stage much larger than R1. 
   ❑ Remember R1 is in parallel with Z2. 
   

 

 
■ In order to insure that the second stage does not “load” down the first stage we need: 

     R2 >> R1  since at high frequencies Z2 ⇒ R2 
■ We can now pick and calculate values for the R’s and C’s in the problem. 

   ❑  Let C1 = 1 µF ⇒ R1 = 1/(20Hz 2πC1) = 8 kΩ 
   ❑  Let R2 > 100R1 ⇒ R2 = 1 MΩ, and C2 = 1/(2x104 Hz 2πR2) = 8 pf

☞ R1 = 8 kΩ, C1 = 1 µF 
    R2 = 1 MΩ, C2 = 8 pf
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Z1 = R1+1/ jωC1
Z2 = R2 +1/ jωC2
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◆ Exact derivation for above filter: 
  ◆  In the above circuit we treated the two RC filters as independent. 
  ◆ Why did this work? 
  ◆  We want to calculate the gain (|Vout/Vin|) of the following circuit: 

 
 

 
 
 
 

  ■  Working from right to left, we have: 
   
  
   ❑  ZT is the total impedance of the circuit as seen from the input.  
   ❑  Z1 is the parallel impedance of R1 and R2, in series with C2. 

 
  

 
 

   ☞ 
 

  ■  Finally we can solve for the gain G = |Vout/Vin|: 
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  ■  We can relate this to our previous result by rewriting the above as: 
   

 
 
 
 

  ■  If we now remember the approximation (R1<< R2 + X2) made on the previous page to insure 
   that the second stage did not load down the first then we get the following: 
   
  

 

  ■  The gain of the circuit looks like the product of two filters, one high pass and one low pass! 
  ■  If we calculate the gain of this circuit in dB, the total gain is the sum of the gain of each piece: 
   
  

 
 
 

 
   ☞  The gain of successive filters measured in dB's add! 
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●  Another Example: Calculate |I| and the phase angle between Vin and I for the following circuit: 
 

 
 
 
 

■  First calculate |I|. 
  ◆  The total current out of the input source (I) is related to Vin 
   and the total impedance (ZT) of the circuit by Ohm’s law: 
     
  ◆  The total impedance of the circuit is given by the parallel impedance of the two branches: 
   
  

 
 

  ◆  Putting in numerical values for the R's and X's we have: 
   

 
 
 

  ◆  We can now find the magnitude of the current: 
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I =Vin /ZT

€ 

1/ZT =1/Z1+1/Z2
Z1 = R1+ X1
Z2 = R2 + X2

€ 

Z1 = 20+ j37.7 Ω
Z2 =10− j53.1 Ω
ZT = 67.4 + j11.8 Ω

€ 

I = Vin /ZT
= 230 V/68.4 Ω
= 3.36 A
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This is RMS value since |Vin| is given as RMS
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■  Calculate the phase angle between Vin and I: 
  ◆  It’s easiest to solve this by writing V and Z in polar form: 
   
  

 
 
 
 

  ◆  Finally we can write for the current: 
   
  ◆  Taking the real part of I: 
   
   ☞  The current lags the voltage by 9.90. 
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Vin = (230)e jωt

ZT = (68.4)e jφ

tanφ = ImZT /ReZT
=11.8 /67.4

φ = 9.90
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I = 3.36e j(ωt−φ)
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I = 3.36cos(ωt −9.90) A
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