Lecture 1: Introduction

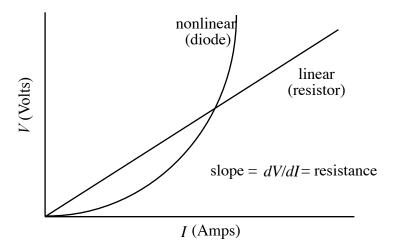
Some Definitions:

- Current (I): Amount of electric charge (Q) moving past a point per unit time
 - I = dQ/dt =Coulombs/sec
 - units = Amps (1 Coulomb = $6x10^{18}$ electrons)
- Voltage (V):
 - Work needed to move charge from point a to b

Work = $V \bullet Q$

- volt = Work/Charge = Joules/Coulomb
- Voltage is always measured with respect to something
- "ground" is defined as zero Volts
- <u>D</u>irect <u>C</u>urrent (DC): In a DC circuit the current and voltage are constant as a function of time
- Power (*P*): Rate of doing work
 - P = dW/dt
 - units = Watts

- Ohms Law: Linear relationship between voltage and current
 - $\bullet \quad V = I \bullet R$
 - $R = \text{Resistance}(\Omega)$
 - units = Ohms



• Joules Law: When current flows through a resistor energy is dissipated

$$W = QV$$
$$P = dW/dt = VdQ/dt + QdV/dt$$

- dV/dt = 0 for DC circuit and averages to 0 for AC
- Power = $VdQ/dt = V \bullet I$
- Using Ohms law

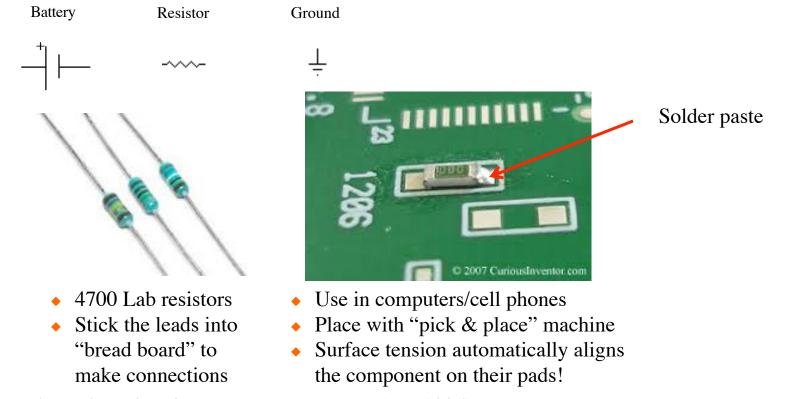
$$P = I^2 R = V^2 / R$$

• 100 Watts = 10 V and 10 Amps or 10 V through 1 Ω

K.K. Gan

Simple Circuits

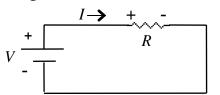
• Symbols:



- Dimension of surface mount components (e.g. 1206):
 - length: $12 \times 250 \ \mu m = 3 \ mm$
 - width: $6 \ge 250 \ \mu m = 1.5 \ mm$
 - smallest available: 01005 (0.4 mm \times 0.2 mm, power rating = 0.03 W)
 - slightly less insane version: 0201 (0.6 mm \times 0.3 mm, power rating = 0.05 W)

K.K. Gan

• Simple(st) Circuit:

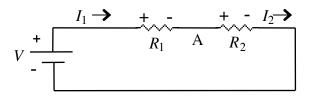


- Convention: Current flow is in the direction of <u>positive</u> charge flow
 - When we go across a battery in direction of current $(- \rightarrow +)$

r +V

- Voltage drop across a resistor in direction of current $(+ \rightarrow -)$
 - ☞ -*IR*
 - Conservation of Energy: sum of potential drops around the circuit should be zero
 V IR = 0 or *V* = *IR*!!

• Next simple(st) circuit: two resistors in series



- Conservation of charge: $I_1 = I_2 = I$ at point A
 - $= V = I(R_1 + R_2) = IR$
 - \bowtie $R = R_1 + R_2$
 - ***** Resistors in Series Add: $R = R_1 + R_2 + R_3...$
- What's voltage across R_2 ?

 $V_2 = I_2 R_2 = V R_2 / (R_1 + R_2)$ "Voltage Divider Equation"

• Two resistors in parallel

$$I \rightarrow A$$

$$V \rightarrow I_{1} \rightarrow R_{1}$$

$$V = I_{1} + I_{2} = V/R_{1} + V/R_{2} = V/R$$

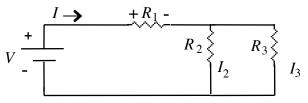
$$I = I_{1} + I_{2} = V/R_{1} + 1/R_{2}$$

$$I/R = 1/R_{1} + 1/R_{2}$$

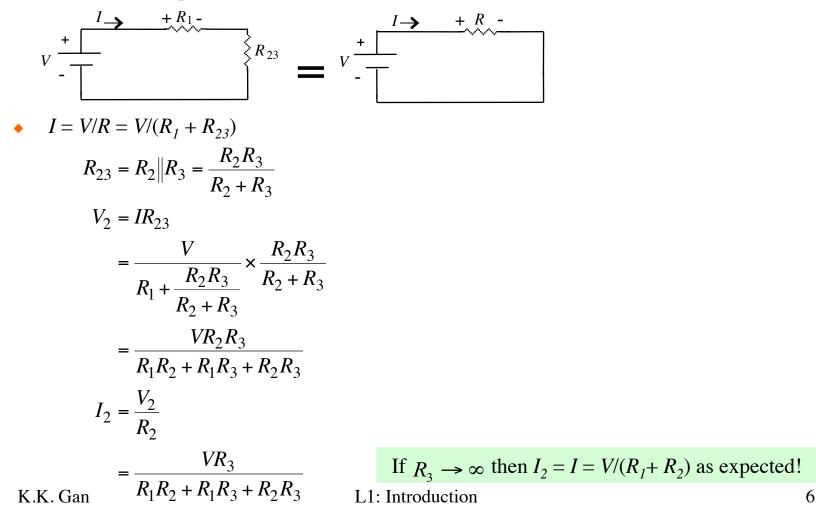
$$\therefore R = \frac{R_{1}R_{2}}{R_{1} + R_{2}}$$

$$\star Parallel Resistors add like: 1/R = 1/R_{1} + 1/R_{2} + 1/R_{3} + \dots$$
K.K. Gan L1: Introduction

• In a circuit with 3 resistors (series and parallel), what's $I_2 = V_2/R_2$?

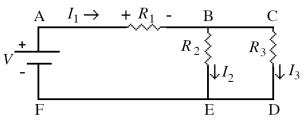


• reduce to a simpler circuit:



Kirchoff's Laws

- We can formalize and generalize the previous examples using Kirchoff's Laws:
 - 1. $\Sigma I = 0$ at a node: conservation of charge
 - 2. $\Sigma V = 0$ around a closed loop: conservation of energy
 - example



- node B: $I_1 = I_2 + I_3 \rightarrow I_1 I_2 I_3 = 0$
- loop ABEF: $V I_1 R_1 I_2 R_2 = 0$
- $loop ACDF: V I_1 R_1 I_3 R_3 = 0$
 - \sim 3 linear equations with 3 unknowns: I_1, I_2, I_3
 - always wind up with as many linear equations as unknowns!
- use matrix methods to solve these equations:

$$V = RI$$

$$\begin{bmatrix} V \\ V \\ 0 \end{bmatrix} = \begin{bmatrix} R_1 & R_2 & 0 \\ R_1 & 0 & R_3 \\ 1 & -1 & -1 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \end{bmatrix}$$

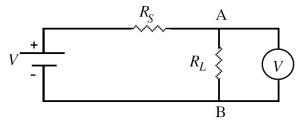
K.K. Gan

$$I_{2} = \frac{\det \begin{bmatrix} R_{1} & V & 0 \\ R_{1} & V & R_{3} \\ 1 & 0 & -1 \end{bmatrix}}{\det \begin{bmatrix} R_{1} & R_{2} & 0 \\ R_{1} & 0 & R_{3} \\ 1 & -1 & -1 \end{bmatrix}} = \frac{VR_{3}}{R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3}}$$

the same solution as in page 5!

Measuring Things

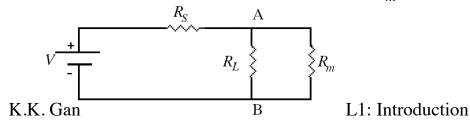
• Voltmeter: Always put in parallel with what you want to measure



• If no voltmeter we would have:

$$V_{AB} = \left[\frac{R_L}{R_S + R_L}\right] V$$

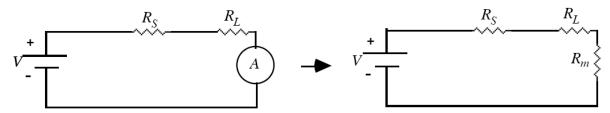
• If the voltmeter has a finite resistance R_m then circuit looks like:



From previous pages we have:

$$V_{AB}^{*} = \left[\frac{R_{m} \| R_{L}}{R_{S} + R_{m} \| R_{L}}\right] V$$
$$= \frac{V R_{m} R_{L}}{R_{S} R_{L} + R_{m} R_{L} + R_{S} R_{m}}$$
$$= \frac{V R_{L}}{R_{L} + R_{S} + \frac{R_{S} R_{L}}{R_{m}}}$$
$$\cong V_{AB} \quad \text{if } R_{L} << R_{m}$$

- so good voltmeter has high resistance (> $10^6 \Omega$)
- Ammeter: measures current
 - Always put in series with what you want to measure

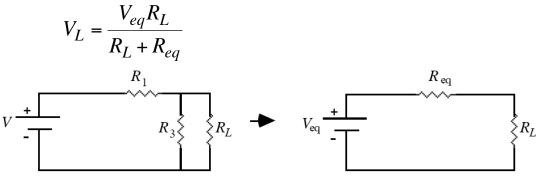


- Without meter: $I = V/(R_S + R_L)$
- With meter: $I^* = V/(R_S + R_L + R_m)$
 - good ammeter has $R_m \ll (R_S + R_L)$, i.e. low resistance (0.1-1 Ω)

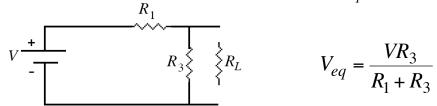
Thevenin's Equivalent Circuit Theorem

• Any network of resistors and batteries having 2 output terminals may be replaced by a series combination of resistor and battery

- Useful when solving complicated (!?) networks
- Solve problems by finding V_{eq} and R_{eq} for circuit without load, then add load to circuit.
- Use basic voltage divider equation:

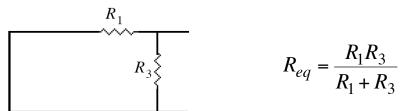


- Two rules for using Thevenin's Thereom:
 - 1. Take the load out of the circuit to find V_{eq} :



K.K. Gan

2. Short circuit all power supplies (batteries) to find R_{eq} :



• Can now solve for I_L as in previous examples:

$$I_{L} = \frac{V_{eq}}{R_{eq} + R_{L}}$$
$$= \left[\frac{VR_{3}}{R_{1} + R_{3}}\right] \times \frac{1}{\frac{R_{1}R_{3}}{R_{1} + R_{3}}} + R_{L}$$
$$= \frac{VR_{3}}{R_{1}R_{L} + R_{1}R_{3} + R_{L}R_{3}}$$

Same answer as previous examples!