
Physics 4700 HOMEWORK 2

Due February 10

1. Calculate I_1 and I_2 .

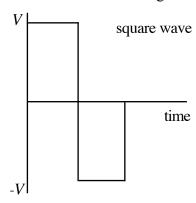
2. This is a review problem on complex numbers. Manipulating complex numbers will become important when we discuss AC circuits.

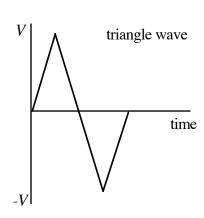
Let
$$A = 2 + 4j$$

$$B = -1 + 3j$$

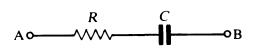
$$C = 3 - 2j$$

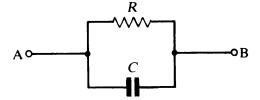
Find the magnitude and phase of,

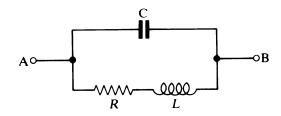

a.
$$A, B$$
 and C


b.
$$(A+B)/C$$

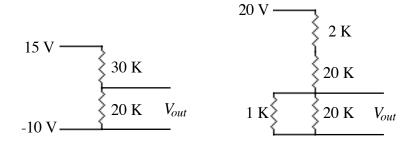
c.
$$(2A - 3B^*)/(A - C^*)$$
, * = complex conjugate


3. A current of 1 mA charges a capacitor of 1 μF capacitor. How long does it take for the capacitor to reach 10 V?


4. Calculate the $V_{\rm RMS}$ for the following waveforms:



5. Calculate the impedance Z_{AB} in the form a + jb and $|Z|e^{j\theta}$.



6. Calculate the impedance Z_{AB} in the form a + jb and $|Z|e^{j\theta}$.

- 7. Design a low pass RC filter that will attenuate a 60 Hz sinusoidal voltage by 12 dB relative to the DC gain. Use a 100 Ω resistance. Explain in words why the low pass RC filter attenuates the high frequencies.
- **8.** For a low pass RC filter prove that
 - a. at the frequency $\omega = 1/RC$ the voltage gain equals $0.707 = \frac{1}{\sqrt{2}}$.
 - b. the rise time of the output pulse equals 2.2RC for a zero rise time input pulse (See e.g. p. 107 of Simpson for definition of rise time.)
- **9.** Draw the Thevenin equivalent circuit for the following two circuits: (note: the load resistor across the V_{out} terminals is not shown).

10. For a high Q parallel RLC circuit prove that $Q = \omega_0/\Delta\omega$, where ω_0 is the (angular) resonant frequency and $\Delta\omega$ is the width at the half power points.