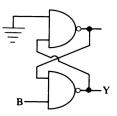
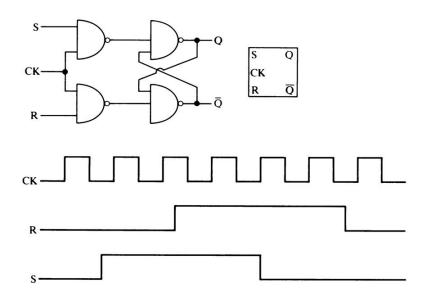

Physics 4700 Homework VII

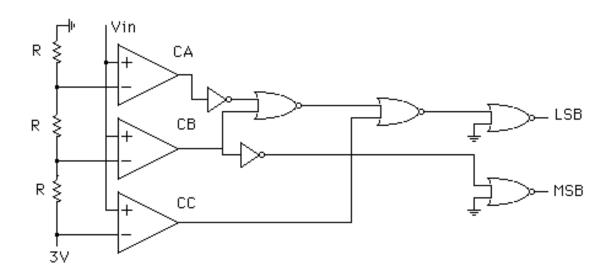
Due April 13


- 1. Convert $(49)_{10}$ to the following
 - a. $()_2$
 - b. ()₈
 - c. ()16
- 2. Convert the following binary numbers to decimal:
 - a. 1110101.0110
 - b. 11.01010101...repeats
- 3. Diagram how would you implement the following functions using,
 - a. only NAND gates
 - b. only NOR gates

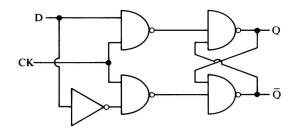
$$F = A \cdot \overline{B} + \overline{A} \cdot B \qquad \qquad F = A + B$$
$$F = A \cdot B \qquad \qquad F = \overline{A}$$


4. Write the truth table for P in terms of D_3 , D_2 , D_1 , D_0 . What is P called?

5. What is the relationship between B and Y?



6. For the clocked RS flip-flop shown, with Q = 0, $\overline{Q} = 1$ initially, sketch Q. If R is held at 0, sketch Q for the CK and S inputs shown.



7. The following circuit can be used to convert an input analog voltage to a digital output voltage. C_A, C_B, and C_C are comparators which give a logic level 1 if the positive input (+) is greater than the negative input. The outputs, LSB and MSB stand for least significant bit and most significant bit respectively. Complete the following truth table. You will have a chance to build something similar to this in lab.

V _{input} (V)	C _A	C _B	C _C	LSB	MSB
0.5					
1.5					
2.3					
4.0					

- 8. For the following circuit
 - a. Write a truth table.
 - b. Write a standard schematic diagram for this flip-flop.
 - c. This flip-flop is usually called a _____ flip-flop.

9. Design a synchronous counter that will count through the sequence 1, 3, 5, 7, 9, 1, 3, 5, 7, 9... using JK flip-flops.