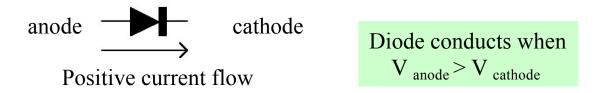
Lecture 5: Diodes and Transistors

Invention of transistor and birth of modern electronics

John Bardeen, William Shockley and Walter Brattain at Bell Labs, 1948.



1st transistor


Transistor size now: 5 nm

Diodes:

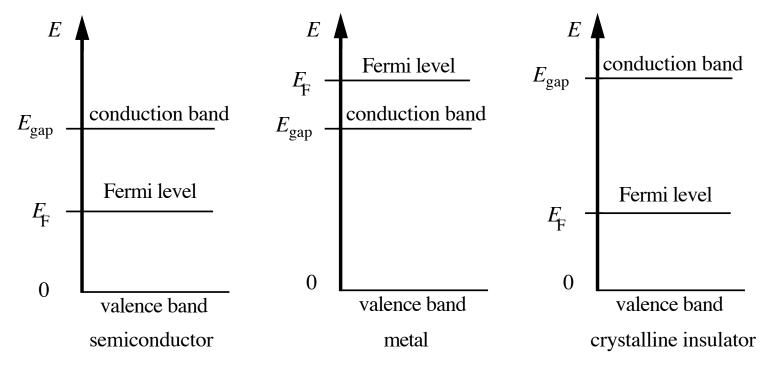
- What do we use diodes for?
 - protect circuits by limiting the voltage (clipping and clamping)
 - turn AC into DC (voltage rectifier)
 - voltage multipliers (e.g. double input voltage)
 - non-linear mixing of two voltages (e.g. amplitude modulation)

Diodes (and transistors) are non-linear device: $V \neq IR!$

L5: Diodes and Transistors

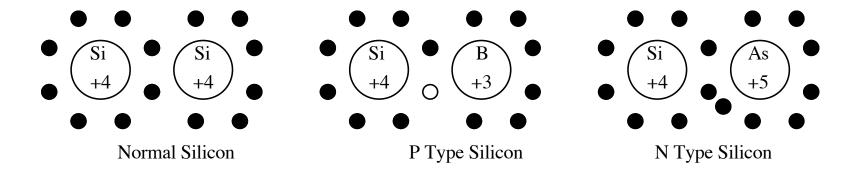
- Diode is forward biased when $V_{\text{anode}} > V_{\text{cathode}}$.
 - Diode conducts current strongly
 - Voltage drop across diode is (almost) independent of diode current
 - Effective resistance (impedance) of diode is small
- Diode is reverse biased when $V_{\text{anode}} < V_{\text{cathode}}$.
 - Diode conducts current very weakly (typically $< \mu A$)
 - Diode current is (almost) independent of voltage, until breakdown
 - Effective resistance (impedance) of diode is very large
- Current-voltage relationship for a diode:

$$I = I_s(e^{eV/kT} - 1)$$

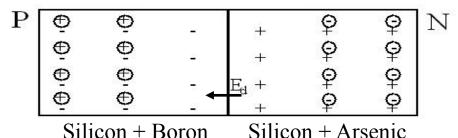

- "diode", "rectifier", or "Ebers-Moll" equation
- I_s = reverse saturation current (typically $< \mu A$)
- k = Boltzmann's constant, e = electron charge, T = temperature
- At room temperature, kT/e = 25.3 mV,

$$I = I_s e^{39\tilde{V}}$$
 if $V > 0$
 $I = I_s$ if $V < 0$.

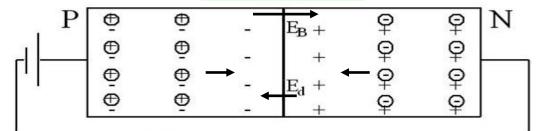
• Effective resistance of forward biased diode (V > 0):


$$dV/dI = (kT/e)/I \approx 25 \Omega/I$$
, I in mA

- What's a diode made out of?
 - Semiconductors!
 - The energy levels of a semiconductor can be modified
 - ⇒ a material (e.g. silicon or germanium) that is normally an insulator will conduct electricity.
 - Energy level structure of a semiconductor is complicated, requires quantum mechanical treatment.

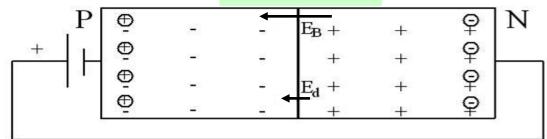

Material	Example	Resistivity (Ω -cm)
Conductor	Copper	1.56×10^{-6}
Semiconductor	Silicon	10^3 - 10^6
Insulator	Ceramics	10^{11} - 10^{14}

- How do we turn a semiconductor into a conductor?
 - Dope it!
 - Doping is a process where impurities are added to the semiconductor to lower its resistivity
 - Silicon has 4 electrons in its valence level
 - We add atoms with 3 or 5 valence shell electrons to a piece of silicon.
 - Phosphorous, Arsenic, Antimony have 5 valence electrons
 - Boron, Aluminum, Indium have 3 valence electrons
- N type silicon:
 - Adding atoms which have 5 valence electrons makes the silicon more negative.
 - The majority carriers are the excess electrons.
- **P** type silicon
 - Adding atoms which have 3 valence electrons makes the silicon more positive.
 - The majority carriers are "holes".
 - A hole is the lack of an electron in the valence shell.


- How do we make a diode?
 - Put a piece of N type silicon next to a piece of P type silicon.
- Unbiased diode

Depletion zone

Forward biased diode


Very small depletion zone

Forward Current

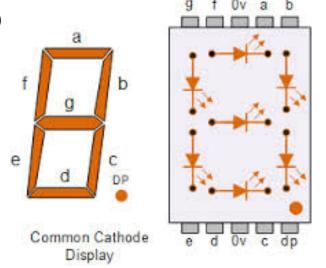
Reversed biased diode

Very large depletion zone

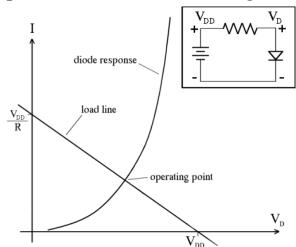
L5: Diodes and Transistors

Very small leakage current

- → mobile electron
- ⊕ mobile hole
- fixed ionized acceptor atom
- + fixed ionized doner atom


Barrier due to depletion region very small

→ large current can flow


Barrier due to depletion region very large

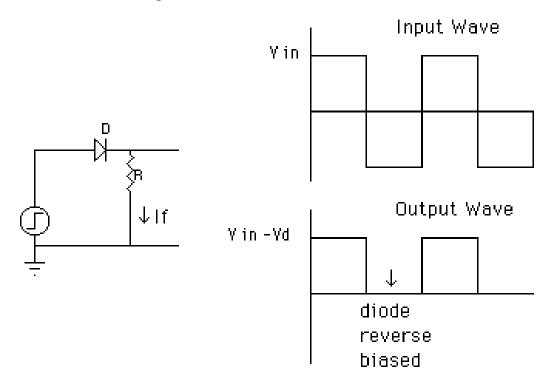
→ small leakage current

- diode characteristics
 - reverse voltage and current
 - peak current and voltage
 - capacitance
 - recovery time
 - sensitivity to temperature
- types of diodes
 - junction diode (ordinary type)
 - light emitting (LED)
 - "direct band gap" material: both holes and electrons have the same momentum
 - electron falls into a lower energy level when it meets a hole
 - ⇒ energy is released in the form of a photon (light)
 - photodiodes (absorbs light, gives current)
 - Schottky (high speed switch, low turn on voltage, Al. on Silicon)
 - zener (special junction diode, use reversed biased)
 - tunnel (*I* vs. *V* slightly different than jd's, negative resistance!)
 - veractor (junction capacitance varies with voltage)

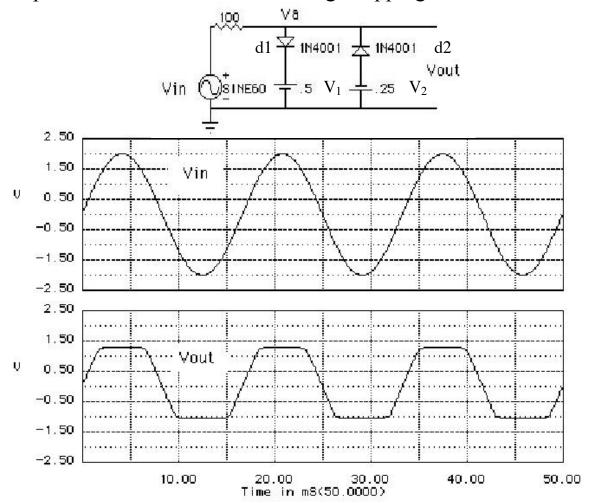
- Examples of Diode Circuits
 - Simplest Circuit: What's voltage drop across diode?

• In diode circuits we still use Kirchhoff's law:

$$V_{DD} = V_D + IR$$


$$I = V_{DD}/R - V_D/R$$

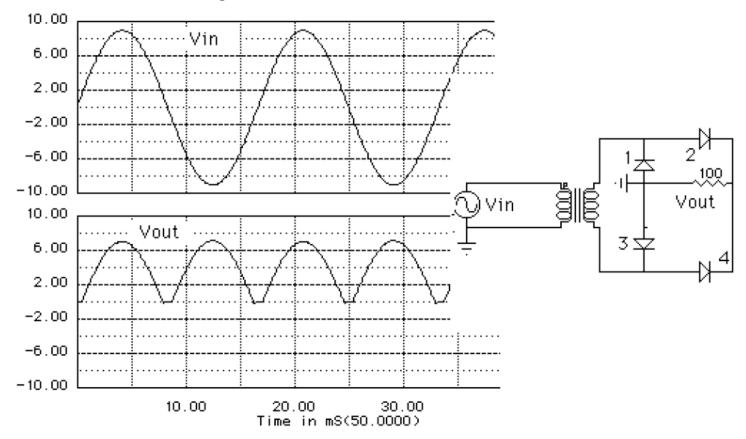
• For this circuit I vs. V_D is a straight line with the following limits:


$$V_D = 0 \implies I = V_{DD} / R$$

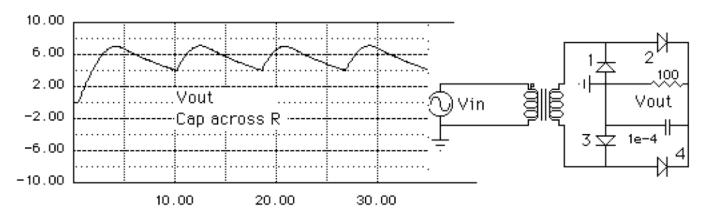
 $V_D = V_{DD} \implies I = 0$

- The straight line (load line) is all possible (V_D, I) for the **circuit**.
- The diode curve is all possible (V_D, I) for the **diode**.
- The place where these two lines intersect gives the actual voltage and current for this circuit.

- Diode Protection (clipping and clamping)
 - The following circuit will get rid of the negative part of the input wave.
 - When the diode is negative biased, no current can flow in the resistor, so $V_{\text{out}} = 0$.

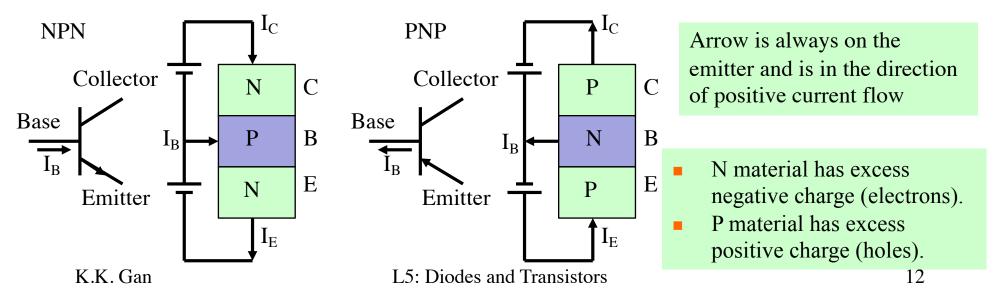


• For more protection consider the following "clipping" circuit: for silicon $V_d \approx 0.6\text{-}0.7 \text{ V}$



- If $V_a > V_{d1} + V_1$, then diode 1 conducts so $V_{out} \le V_{d1} + V_1$.
- If $V_a < -V_{d2} V_2$, then diode 2 conducts so $V_{out} \ge -V_{d2} V_2$.
- If we assume $V_{d1} = V_{d2} \approx 0.7 \text{ V}$ and $V_1 = 0.5$, $V_2 = 0.25 \text{ V}$,
 - for $V_{\rm in} > 1.2$ V, d1 conducts
 - for $V_{\rm in}$ < -0.95 V, d2 conducts

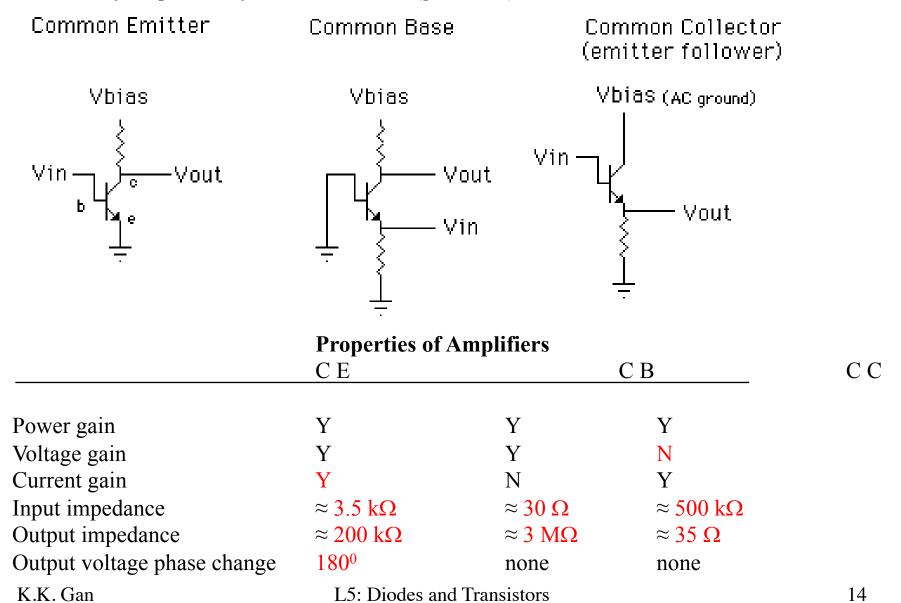
- Turning AC into DC (rectifier circuits)
 - Consider the following circuit with 4 diodes: full wave rectifier.



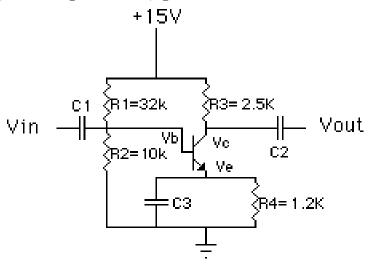
- In the positive part of $V_{\rm in}$, diodes 2 and 3 conduct.
- In negative part of the cycle, diodes 1 and 4 conduct.
- This circuit has lots of ripple.
 - We can reduce ripple by putting a capacitor across the load resistor.
 - Pick RC time constant such that: RC > 1/(60 Hz) = 16.6 msec.
 - = example: $R = 100 \Omega$ and $C = 100 \mu$ F to reduce ripple

Transistors:

- Transistors are the heart of modern electronics (replaced vacuum tubes)
 - voltage and current amplifier circuits
 - low power and small size, can pack millions of transistors in mm² (chips in cell phones/laptops)
- In this class we will only consider *bipolar* transistors.
 - Bipolar transistors have 3 leads: emitter, base, collector
 - Bipolar transistors are two diodes back to back and come in two forms:



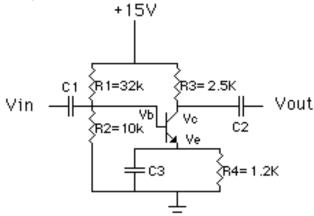
- Some **simple** rules for getting transistors to work
 - 1. For NPN (PNP) collector must be more positive (negative) in voltage than emitter.
 - 2. Base-emitter and base-collector are like diodes:



- For silicon transistors, $V_{\rm BE} \approx 0.6$ -0.7 V when transistor is on.
- 3. The currents in the base (I_B) , collector (I_C) and emitter (I_E) are related as follows:
 - always: $I_{\rm B} + I_{\rm C} = I_{\rm E}$
 - rough rule: $I_C \approx I_E$, and the base current is very small ($\approx 0.01 I_C$)
 - **B**etter approximation uses 2 related constants, α and β .
 - $I_{\rm C} = \beta I_{\rm B}$
 - β is called the current gain, typically 20-200
 - $I_{\rm C} = \alpha I_{\rm E}$
 - α typically 0.99
 - Still better approximation:
 - uses 4 (hybrid) parameters to describe transistor performance ($\beta = h_{fe}$)
 - when all else fails, resort to the data sheets!
- 4. Common sense: must not exceed the power rating, current rating etc. or else the transistor dies.

- Transistor Amplifiers
 - Transistor has 3 legs, one of them is usually grounded.
 - Classify amplifiers by what is common (*grounded*).

- Biasing Transistors
 - For an amplifier to <u>work properly</u> it must be biased **on** all the time, not just when a signal is present.
 - "On" means current is flowing through the transistor (therefore $V_{\rm BE} \approx 0.6\text{-}0.7 \text{ V}$).
 - We usually use a DC circuit (R_1 and R_2 in the circuit below) to achieve the biasing.
- Calculating the operating (DC or quiescent) point of a Common Emitter Amplifier:


Common Emitter Amp

- We want to determine the operating (quiescent) point of the circuit.
- This is a fancy way of saying what's V_B , V_E , V_C , V_{CE} , I_C , I_B , I_E when the transistor is on, but $V_{in} = 0$.
- \bullet The capacitors C_1 and C_2 are decoupling capacitors, they block DC voltages.
- \bullet C_3 is a bypass capacitor that provides the AC ground (common).

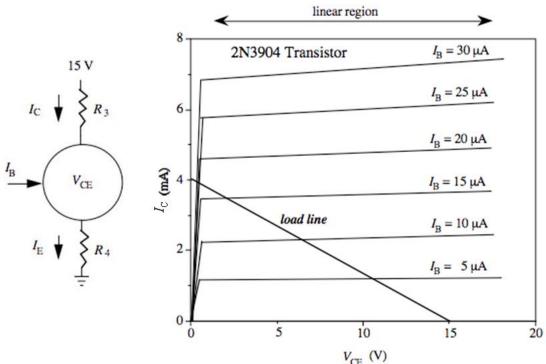
- Crude Method for determining operating point when no spec sheets are available.
 - a. Remember $I_B = I_C/\beta$ and $\beta \approx 100$ (typical value).
 - \Rightarrow we can <u>neglect</u> the current into the base since it's much smaller than $I_{\rm C}$ or $I_{\rm E}$.
 - b. If transistor is "working" then $V_{\rm BE} \approx 0.6\text{-}0.7 \text{ V}$ (silicon transistor).
 - c. Determine V_B using R_1 and R_2 as a voltage divider

$$V_{\rm B} = 15 \text{ V} \frac{R_2}{R_1 + R_2} = 3.6 \text{ V}$$

- d. Find $V_{\rm E}$ using $\bar{V}_{\rm B}$ $\bar{V}_{\rm E}$ = 0.6 V \Rightarrow $V_{\rm E}$ = 3 V.
- e. $I_E = V_E / R_4 = 3V/1.2 \text{ k}\Omega = 2.5 \text{ mA}.$
- f. Use the approximation $I_C = I_E \Rightarrow I_C = 2.5 \text{ mA}$.
- g. $V_C = 15 \text{ V} I_C R_3 = 15 2.5 \text{ mA} \times 2.5 \text{ k}\Omega = 8.75 \text{ V}.$
- h. $V_{\text{CE}} = 8.75 3 = 5.75 \text{ V}.$
- The voltages at every point in the circuit are now determined!!!

Common Emitter Amp

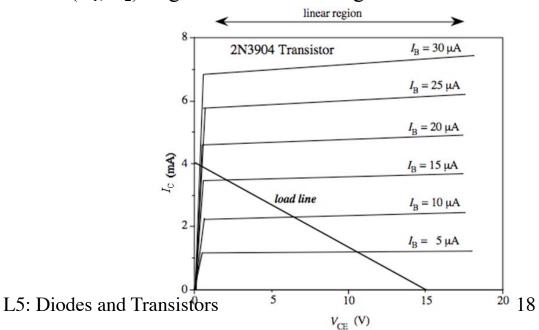
Spec Sheet or Load line method


- → Much more accurate than previous method.
- Load line is set of all possible values of $I_{\rm C}$ vs. $V_{\rm CE}$ for the circuit in hand.
- lack Assume same circuit as previous page and we know R_3 and R_4 .
- If we neglect the base current, then

$$15 = I_{\rm C}(R_3 + R_4) + V_{\rm CE}$$

- $I_{\rm C} = 15/(R_3 + R_4) V_{\rm CE}/(R_3 + R_4)$
- The above is a straight line in (I_C, V_{CE}) space.
 - ⇒ This line is the load line.
- Assume $R_3 + R_4 = 3.75$ kΩ, then we can plot the load line from the two limits:

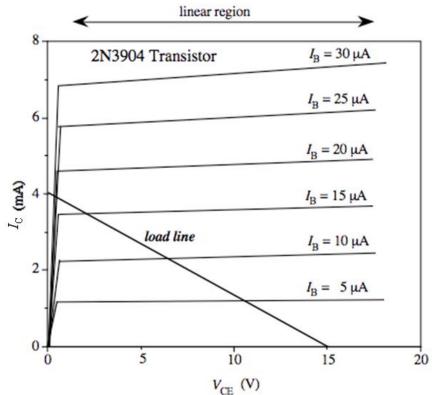
$$I_{\rm C} = 0$$
, $V_{\rm CE} = 15 \text{ V}$ and $V_{\rm CE} = 0$, $I_{\rm C} = 15 \text{ V}/3.75 \text{ k}\Omega = 4 \text{ mA}$


L5: Diodes and Transistors

Spec. Sheet of 2N3904 transistor:

 $I_{\rm C}$ vs. $V_{\rm CE}$ for various $I_{\rm B}$

- We want the operating point to be in the linear region of the transistor
 - ⇒ we want the output to be a linear representation of the input.
- Pick the operating point such that for reasonable changes in $V_{\rm CE}$, $I_{\rm C}$
 - \Rightarrow the circuit stays out of the non-linear region and has $I_C > 0$.
 - $I_{\rm C}$ must be > 0 or transistor won't conduct current in the "correct" direction!
 - If circuit is in nonlinear region then V_{out} is a distorted version of V_{in} .
 - If circuit is in region where $I_C = 0$ then V_{out} is "clipped".
- If we pick $I_C = 2.5$ mA as operating point
 - $V_{\rm CE} > 0.5$ is the linear region.
 - Usually pick I_C to be in the middle of the linear region.
 - ⇒ amp will respond the same way to symmetric (around operating point) output voltage swings.
- If $I_C = 2.5 \text{ mA}$ and $I_B = 10-11 \text{ }\mu\text{A}$
 - \rightarrow $V_{\rm CE} = 5-6 \text{ V}$
- \bullet Can now choose the values for resistors (R_1, R_2) to give the above voltages and currents.



• Current Gain Calculation from Spec Sheet

• We define current gain as:

$$G = \Delta I_{\text{out}} / \Delta I_{\text{in}}$$

- This quantity is often called β .
- In our example I_B is the input and I_C is the output.
- If we are in the linear region ($V_{\rm CE} > 0.5 \text{ V}$) and the base current changes from 5 to 10 μ A
 - \Rightarrow the collector current ($I_{\rm C}$) changes from ~ 1.1 to 2.2 mA.
 - \Rightarrow $G = (2.2 1.1 \text{ mA})/(10 5 \text{ }\mu\text{A}) \approx 200$
- Like almost all transistor parameters, the exact current gain depends on many parameters:
 - frequency of input voltage
 - $V_{\rm CE}$
 - $I_{\rm C}$
 - $I_{\rm B}$

