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Lecture 2
Binomial and Poisson Probability Distributions

Binomial Probability Distribution
l Consider a situation where there are only two possible outcomes (a Bernoulli trial)
 H Example:
  u flipping a coin
   + head or tail
  u rolling a dice
   + 6 or not 6 (i.e. 1, 2, 3, 4, 5)
 H Label the probability of a success as p
  + the probability for a failure is then q = 1- p 
l Suppose we have N trials (e.g. we flip a coin N times)
 + what is the probability to get m successes (= heads)?
l Consider tossing a coin twice.  The possible outcomes are:
 H no heads: P(m = 0) = q2

 H one head: P(m = 1) = qp + pq (toss 1 is a tail, toss 2 is a head or toss 1 is head, toss 2 is a tail)
          = 2pq 
 H two heads: P(m = 2) = p2

 H P(0) + P(1) + P(2) = q2 + 2pq + p2 = (q + p)2 = 1
l We want the probability distribution function P(m, N, p) where:
  m = number of success (e.g. number of heads in a coin toss)
  N = number of trials (e.g. number of coin tosses)
  p = probability for a success (e.g. 0.5 for a head)

James Bernoulli (Jacob I) 
born in Basel, Switzerland
Dec. 27, 1654-Aug. 16, 1705
He is one 8 mathematicians 
in the Bernoulli family 
(from Wikipedia).

two outcomes because we don't care which of the tosses is a head
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l If we look at the three choices for the coin flip example, each term is of the form:
  CmpmqN-m m = 0, 1, 2, N = 2 for our example, q = 1 - p always!
 H coefficient Cm takes into account the number of ways an outcome can occur regardless of order
 H for m = 0 or 2 there is only one way for the outcome (both tosses give heads or tails): C0 = C2 = 1
 H for m = 1 (one head, two tosses) there are two ways that this can occur: C1 = 2. 
l Binomial coefficients: number of ways of taking N things m at time

 H 0! = 1! = 1, 2! = 1·2 = 2, 3! = 1·2·3 = 6, m! = 1·2·3···m
 H Order of things is not important
  u e.g. 2 tosses, one head case (m = 1)
   n we don't care if toss 1 produced the head or if toss 2 produced the head
 H Unordered groups such as our example are called combinations
 H Ordered arrangements are called permutations
 H For N distinguishable objects, if we want to group them m at a time, the number of permutations:

  u example: If we tossed a coin twice (N = 2), there are two ways for getting one head (m = 1)
  u example: Suppose we have 3 balls, one white, one red, and one blue. 
   n Number of possible pairs we could have, keeping track of order is 6 (rw, wr, rb, br, wb, bw):

   n If order is not important (rw = wr), then the binomial formula gives

number of two-color combinations

𝐶!,# = 𝑁
𝑚 =

𝑁!
𝑚! 𝑁 − 𝑚 !

𝑃!,# =
𝑁!

𝑁 − 𝑚 !

𝑃$,% =
3!

3 − 2 !
= 6

𝐶$,% =
3!

2! 3 − 2 !
= 3
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l Binomial distribution: the probability of m success out of N trials:

 u p is probability of a success and q = 1 - p is probability of a failure
 u Consider a game where the player bats 4 times:
  H probability of 0/4 = (0.67)4 = 20%
  H probability of 1/4 = [4!/(3!1!)](0.33)1(0.67)3 = 40%
  H probability of 2/4 = [4!/(2!2!)](0.33)2(0.67)2 = 29%
  H probability of 3/4 = [4!/(1!3!)](0.33)3(0.67)1 = 10%
  H probability of 4/4 = [4!/(0!4!)](0.33)4(0.67)0 = 1%
  H probability of getting at least one hit = 1 - P(0) = 0.8

𝑃 𝑚,𝑁, 𝑝 = 𝐶!,#𝑝#𝑞!&# = 𝑁
𝑚 𝑝#𝑞!&# =

𝑁!
𝑚! 𝑁 − 𝑚 !

𝑝#𝑞!&#
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l To show that the binomial distribution is properly normalized, use Binomial Theorem:

 +  binomial distribution is properly normalized
 l Mean of binomial distribution:

 H A cute way of evaluating the above sum is to take the derivative:
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l Variance of binomial distribution (obtained using similar trick):

 H Example: Suppose you observed m special events (success) in a sample of N events
  u measured probability (“efficiency”) for a special event to occur:
   

  u error on the probability ("error on the efficiency"):

   +  sample (N) should be as large as possible to reduce uncertainty in the probability measurement
 H Example: Suppose a baseball player's batting average is 0.33 (1 for 3 on average).
  u Consider the case where the player either gets a hit or makes an out (forget about walks here!).
    probability for a hit:   p = 0.33
    probability for “no hit”: q = 1 - p = 0.67
  u On average how many hits does the player get in 100 at bats?
    µ = Np = 100·0.33 = 33 hits
  u What's the standard deviation for the number of hits in 100 at bats?
    s = (Npq)1/2  = (100·0.33·0.67)1/2 ≈ 4.7 hits
   + we expect ≈ 33 ± 5 hits per 100 at bats

𝜎% =
∑#)*! (𝑚 − 𝜇)%𝑃(𝑚,𝑁, 𝑝)
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Uncertainty in eff in "Monte Carlo”
simulation of a detector

Both formulas give the same uncertainty
in measurement of p in Lab 2
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Poisson Probability Distribution
l A widely used discrete probability distribution
l Consider the following conditions:
 H p is very small and approaches 0
  u example: a 100 sided dice instead of a 6 sided dice, p = 1/100 instead of 1/6
  u example: a 1000 sided dice, p = 1/1000
 H N is very large and approaches ∞
  u example: throwing 100 or 1000 dice instead of 2 dice
 H product Np is finite
l Example: radioactive decay
 H Suppose we have 25 mg of an element
  +  very large number of atoms: N ≈ 1020

 H Suppose the lifetime of this element l = 1012 years ≈ 5x1019 seconds
  + probability of a given nucleus to decay in one second is very small: p = 1/l = 2x10-20/sec
  + Np = 2/sec finite!
  + number of counts in a time interval is a Poisson process
l Poisson distribution can be derived by taking the appropriate limits of the binomial distribution

Siméon Denis Poisson
June 21, 1781-April 25, 1840
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 u m is always an integer ≥ 0
  u µ does not have to be an integer
 H It is easy to show that:
   µ  = Np = mean of a Poisson distribution
   s2 = Np = µ  = variance of a Poisson distribution
l Radioactivity example with an average of 2 decays/sec:
 H What’s the probability of zero decays in one second?

 H What’s the probability of more than one decay in one second?

 H Estimate the most probable number of decays/sec?

Poisson distribution is normalized

mean and variance are the same number
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 u To solve this problem its convenient to maximize lnP(m, µ) instead of P(m, µ).

  u In order to handle the factorial when take the derivative we use Stirling's Approximation:

  + The most probable value for m is just the average of the distribution
  + If you observed m events in an experiment, the error on m is	𝜎 = 𝜇 = 𝑚
  u This is only approximate since Stirlings Approximation is only valid for large m.
  u Strictly speaking m can only take on integer values while µ is not restricted to be an integer.

ln𝑃 𝑚, 𝜇 = ln
𝑒&3𝜇#

𝑚!
= −𝜇 + 𝑚∙lnµ − ln𝑚!

ln𝑚! ≈ 𝑚∙ln𝑚 − 𝑚
𝜕
𝜕𝑚

ln𝑃 𝑚, 𝜇 =
𝜕
𝜕𝑚
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𝜕
𝜕𝑚

−𝜇 + 𝑚 ; ln𝜇 − 𝑚 ; ln𝑚 + 𝑚

	 = ln𝜇 − ln𝑚 −𝑚
1
𝑚 + 1

	 = 0
	 𝑚 = 𝜇

Error bar is the square root of the number of entries
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Comparison of  Binomial and Poisson distributions with mean µ = 1

Not much 
difference
between them!

For large N: Binomial distribution looks like a Poisson of the same mean


