Lecture 5

Chi Square Distribution (χ^2) and Least Squares Fitting

Chi Square Distribution (χ^2)

- Suppose:
 - We have a set of measurements $\{x_1, x_2, \dots, x_n\}$.
 - We know the true value of each $x_i (x_{t1}, x_{t2}, ..., x_{tn})$.
 - ☞ We would like some way to measure how good these measurements really are.
 - Obviously the closer the (x_1, x_2, \dots, x_n) 's are to the $(x_{t1}, x_{t2}, \dots, x_{tn})$'s,
 - ☞ the better (or more accurate) the measurements.
 - ☞ can we get more specific?
- Assume:
 - The measurements are independent of each other.
 - The measurements come from a Gaussian distribution.
 - $(\sigma_1, \sigma_2 \dots \sigma_n)$ be the standard deviation associated with each measurement.
- Consider the following two possible measures of the quality of the data:

$$R = \sum_{i=1}^{n} \frac{x_i - x_{ti}}{\sigma_i} = \sum_{i=1}^{n} \frac{d_i}{\sigma_i}$$
$$\chi^2 = \sum_{i=1}^{n} \frac{(x_i - x_{ti})^2}{\sigma_i^2} = \sum_{i=1}^{n} \frac{d_i^2}{\sigma_i^2}$$

$$R = 0$$

$$d_{3}$$

$$d_{2} = -d_{1}$$

$$d_{1}$$

 $d_{i} = -d_{i}$

- Which of the above gives more information on the quality of the data?
 - Both R and χ^2 are zero if the measurements agree with the true value.
 - *R* looks good because via the Central Limit Theorem as $n \to \infty$ the sum \to Gaussian.
 - However, χ^2 is better!

K.K. Gan

L5: Chi Square Distribution

1

One can show that the probability distribution for χ^2 is exactly:

$$p(\chi^2, n) = \frac{1}{2^{n/2} \Gamma(n/2)} [\chi^2]^{n/2 - 1} e^{-\chi^2/2} \qquad 0 \le \chi^2 \le \infty$$

This is called the "Chi Square" (χ^2) distribution.

 \star Γ is the Gamma Function:

$$\begin{split} \Gamma(x) &= \int_0^\infty e^{-t} t^{x-1} dt & x > 0\\ \Gamma(n+1) &= n! & n = 1, 2, 3 \dots\\ \Gamma(\frac{1}{2}) &= \sqrt{\pi} \end{split}$$

- This is a continuous probability distribution that is a function of two variables:
 - $\star \chi^2$
 - ★ Number of degrees of freedom (dof):
 - n = # of data points # of parameters calculated from the data points
 - Example: We collected N events in an experiment.
 - We histogram the data in *n* bins before performing a fit to the data points.
 - ☞ We have *n* data points!
 - Example: We count cosmic ray events in 15 second intervals and sort the data into 5 bins:

Number of counts in 15 second intervals	0	1	2	3	4
Number of intervals	2	7	6	3	2

- we have a total of 36 cosmic rays in 20 intervals
- we have only 5 data points
- Suppose we want to compare our data with the expectations of a Poisson distribution: $N = N_0 \frac{e^{-\mu} \mu^m}{m!}$

K.K. Gan

- Since we set $N_0 = 20$ in order to make the comparison, we lost one degree of freedom: n = 5 - 1 = 4
- If we calculate the mean of the Poission from data, we lost another degree of freedom: n = 5 - 2 = 3
- Example: We have 10 data points.
 - Let μ and σ be the mean and standard deviation of the data.
 - If we calculate μ and σ from the 10 data point then n = 8.
 - If we know μ and calculate σ then n = 9.
 - If we know σ and calculate μ then n = 9.
 - If we know μ and σ then n = 10.

Like the Gaussian probability distribution, the probability integral cannot be done in closed form:

$$P(\chi^2 > a) = \int_{a}^{\infty} p(\chi^2, n) d\chi^2 = \int_{a}^{\infty} \frac{1}{2^{n/2} \Gamma(n/2)} [\chi^2]^{n/2-1} e^{-\chi^2/2} d\chi^2$$

We must use a table to find out the probability of exceeding certain χ^2 for a given dof

For $n \ge 20$, $P(\chi^2 > a)$ can be approximated using a Gaussian *pdf* with $a = (2\chi^2)^{1/2} - (2n-1)^{1/2}$

K.K. Gan

- Example: What's the probability to have $\chi^2 > 10$ with the number of degrees of freedom n = 4?
 - ★ Using Table D of Taylor we find $P(\chi^2 > 10, n = 4) = 0.04$.
 - We say that the probability of getting a $\chi^2 > 10$ with 4 degrees of freedom by chance is 4%.

- Some not so nice things about the χ^2 distribution:
 - ★ Given a set of data points two different functions can have the same value of χ^2 .
 - Does not produce a unique form of solution or function.
 - ★ Does not look at the order of the data points.
 - Ignores trends in the data points.
 - ★ Ignores the sign of differences between the data points and "true" values.
 - ☞ Use only the square of the differences.
 - There are other distributions/statistical test that do use the order of the points: "run tests" and "Kolmogorov test"
- K.K. Gan

L5: Chi Square Distribution

Least Squares Fitting

- Suppose we have *n* data points (x_i, y_i, σ_i) .
 - Assume that we know a functional relationship between the points,

y = f(x,a,b...)

- Assume that for each y_i we know x_i exactly.
- The parameters a, b, ... are constants that we wish to determine from our data points.
- A procedure to obtain a and b is to minimize the following χ^2 with respect to a and b.

$$\chi^{2} = \sum_{i=1}^{n} \frac{[y_{i} - f(x_{i}, a, b)]^{2}}{\sigma_{i}^{2}}$$

- This is very similar to the Maximum Likelihood Method.
 - □ For the Gaussian case MLM and LS are identical.
 - **Technically this is a** χ^2 distribution only if the y' s are from a Gaussian distribution.
 - □ Since most of the time the y's are not from a Gaussian we call it "least squares" rather than χ^2 .
- Example: We have a function with one unknown parameter:

f(x,b) = 1 + bx

Find *b* using the least squares technique.

• We need to minimize the following:

$$\chi^{2} = \sum_{i=1}^{n} \frac{\left[y_{i} - f(x_{i}, a, b)\right]^{2}}{\sigma_{i}^{2}} = \sum_{i=1}^{n} \frac{\left[y_{i} - 1 - bx_{i}\right]^{2}}{\sigma_{i}^{2}}$$

To find the *b* that minimizes the above function, we do the following:

$$\frac{\partial \chi^2}{\partial b} = \frac{\partial}{\partial b} \sum_{i=1}^n \frac{\left[y_i - 1 - bx_i\right]^2}{\sigma_i^2} = \sum_{i=1}^n \frac{-2\left[y_i - 1 - bx_i\right]x_i}{\sigma_i^2} = 0$$

n

$$\sum_{i=1}^{n} \frac{y_i x_i}{\sigma_i^2} - \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2} - \sum_{i=1}^{n} \frac{b x_i^2}{\sigma_i^2} = 0$$
n
L5: Chi Square Distrib

K.K. Ga

oution

$$b = \frac{\sum_{i=1}^{n} \frac{y_i x_i}{\sigma_i^2} - \sum_{i=1}^{n} \frac{x_i}{\sigma_i^2}}{\sum_{i=1}^{n} \frac{x_i^2}{\sigma_i^2}}$$

• Each measured data point (y_i) is allowed to have a different standard deviation (σ_i) .

• LS technique can be generalized to two or more parameters for simple and complicated (e.g. non-linear) functions.

• One especially nice case is a polynomial function that is linear in the unknowns (a_i) : $f(x,a_1...a_n) = a_1 + a_2x + a_3x^2 + a_nx^{n-1}$

- We can always recast problem in terms of solving *n* simultaneous linear equations.
 - We use the techniques from linear algebra and invert an $n \ge n$ matrix to find the a_i 's!
- Example: Given the following data perform a least squares fit to find the value of *b*. f(x,b) = 1 + bx

x	1.0	2.0	3.0	4.0
У	2.2	2.9	4.3	5.2
σ	0.2	0.4	0.3	0.1

Using the above expression for b we calculate:
 b = 1.05

• If we <u>assume</u> that the data points are from a Gaussian distribution, we can calculate a χ^2 and the probability associated with the fit.

$$\chi^{2} = \sum_{i=1}^{n} \frac{[y_{i} - 1 - 1.05x_{i}]^{2}}{\sigma_{i}^{2}} = \left(\frac{2.2 - 2.05}{0.2}\right)^{2} + \left(\frac{2.9 - 3.1}{0.4}\right)^{2} + \left(\frac{4.3 - 4.16}{0.3}\right)^{2} + \left(\frac{5.2 - 5.2}{0.1}\right)^{2} = 1.04$$

- From Table D of Taylor:
 - The probability to get $\chi^2 > 1.04$ for 3 degrees of freedom $\approx 80\%$.
 - ☞ We call this a "good" fit since the probability is close to 100%.
- If however the χ^2 was large (e.g. 15),
 - the probability would be small ($\approx 0.2\%$ for 3 dof).
 - ☞ we say this was a "bad" fit.

RULE OF THUMB A "good" fit has $\chi^2 / dof \le 1$

K.K. Gan