Gan/Kass Physics 3700

Physics 3700 Problem Set 5 Due April 1, 2024

1) Suppose our variables x and y are related by:

 $\mathbf{y} = \alpha \mathbf{x} + \beta \mathbf{x}^3$

Assume we have n measurement pairs: (x_i, y_i $\pm \sigma$) (all y's have the same uncertainty, σ). Use the method of Least Squares to derive formulas for the best estimate of α and β .

2) Taylor, Problem 8.14, page 205 (2nd edition: page 202).

3) Two different experiments have measured the mass of the Ohio boson. Experiment #1 measured 1.00 ± 0.01 gm while experiment 2 measured 1.04 ± 0.02 gm.

a) What is the best estimate of the mass of the Ohio boson if we combine the two experiments?

b) Calculate the χ^2 for the two measurements in this problem using:

$$\chi^{2} = \sum_{i=1}^{2} \frac{(m_{i} - m)^{2}}{\sigma_{i}^{2}}$$

with m_i the measurement from experiment *i* and σ_i the standard deviation of the measurement, and *m* the best estimate of the mass obtained by combining the two experiments.

c) How many degrees of freedom are there for this χ^2 ?

d) What's the probability of getting a value of χ^2 per degree of freedom \geq to the one in this problem?

4) Taylor, Problem 8.24, page 208 (2nd edition: Problem 8.24, page 205).

5) Taylor, Problem 12.7, page 285 (2nd edition: page 280). Give the value of the constraint for problems 12.2, 12.3, 12.4.

6) Taylor, Problem 12.8, page 285 (2nd edition: page 280).