
9.  System of Particles

Consider a baseball bat being flopped into the
air. Every part moves in a different way.
However there is a special point on the bat that
moves in a simple parabolic path. This point is
called the center of mass.

Center of Mass:
The center of mass of a body or a system of

bodies is the point that moves as though all the
mass were concentrated there and all external
forces were applied there.

Calculation of Center of Mass:
x
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xcm =
m1x1 + m2x2

m1 + m2

  • For this two-body system, the center of mass
is closer to the heavier object.

  • Center of mass does not need to be located
on either particle.

Generalizing to more than two bodies along a
line:

  

xcm = m1x1 + m2x2 +L +mnxn

m1 + m2 +L +mn

= mi xi∑

Mtotal

The y and z coordinates of the center of mass
of a system of particles extended in three
dimensions) :



  

ycm =
m1y1 + m2y2 +L +mnyn

m1 + m2 +L +mn

=
mi yi∑

Mtotal

zcm =
m1z1 + m2z2 +L +mnzn

m1 + m2 +L +mn

= mizi∑

Mtotal

or vectorically:
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For a real extended object, we need to
integrate over the distribution of mass:

xcm = 1
M

xdm∫

ycm = 1
M

ydm∫

zcm = 1
M

zdm∫



For an object with constant density:

ρ =
dm

dv
= M

V

xcm = 1
V

xdv∫

ycm = 1
V

ydv∫

zcm = 1
V

zdv∫

Use of Symmetry in Estimating Center of Mass:
Sometimes it is easier to determine the center

of mass using symmetry. For an object of
uniform density, the center of mass is at the
geometric center. For example, the center of mass
of a doughnut is in the middle of the hole.  Note
that it is in free space where there is no material.



Similarly, by symmetry argument, the center of
mass of an uniform square box is in the center of
the box.

For irregularly shaped objects, the center of
mass can be determined experimentally:
  1. Take an object and hang it by a string from a
point on the object
  2. Draw a line on the object vertically along the 

string and straight down
  3. Hand the object from a second point on the 

object and draw a second line
  4. The intersection of the two lines is the center 

of mass

Newton's 2nd Law for a System of Particles:
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Example:
A man of mass m clings to a rope ladder

suspended below a stationary balloon of mass M.
(a) If he begins to climb the ladder at speed v
with respect to the ladder, in what direction and
with what speed with respect to the earth will
the balloon move?  (b) What is the state of the
motion after the man stops climbing?



  • The man and the balloon represent a closed 
system with no net force.  So the center of 
mass of the system is initially at rest and will 
remain at rest even though there are internal 
forces.

(a) If the man is climbing up the ladder at speed
v and the balloon and ladder are moving 
down with v

b
, then the man's velocity with 

respect to the ground is:



v v − vb

+ M)v mvg − Mv 0

mv − mv Mvb = 0

+ Mvb =

= mv

m
  • If the balloon is very heavy, M >> m, then the 

velocity of the balloon is very small.

(b) When the man stops climbing (v = 0), the 
balloon will stop moving as well.

Problem 21 (p. 209):
A shell is fired from a gun with a muzzle

velocity of 20 m/s at angle of 60° with the
horizontal.  At the top of the trajectory, the shell
explodes into two fragments of equal mass. One
fragment, whose speed immediately after the
explosion is zero, falls vertically.  Neglecting air
drag, how far from the gun does the other
fragment land?



d
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  • Since the explosion represents an internal 
force, it will not alter the path of the center of

mass.  So when the two pieces hit the ground,
the center of mass will be exactly where the
shell would have been had it not exploded.
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  • The total distance of the part of the shell
that flies furthest is just 3/2 the distance that 
the shell would have flown.



vy = v0 y
+ at

0 = v0 sinθ − gt

t =
v0 sinθ

g

d = 3
2 (v0 cosθ × 2t)

= 3
2 v0 cosθ ×

2v0 sinθ
g

 
 
  

 
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=
3v0

2 sin2θ
2g

= 53 m

Example:
A 400-kg boat has its stern just touching a

dock. A 80-kg person is standing at the bow a
distance of 10 m away. The person begins
walking toward the stern to get off the boat.
Assuming that there is no friction between the



water and the boat, how far is the person from
the dock when he reached the stern.

L
x

d

xcm= 0

  • Since there are no external forces on the 
person-boat system, the center of mass must

remain at the same point.

Person at the bow:

xcm =
mpL + mb

L

2
mp + mb

Person at the stern:



xcm =
mpd + mb
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mpd + mbd = mpL

 d =
mpL

mp + mb

             = (80 kg)(10 m)
80 kg + 400 kg

= 1.66 m
  H  If the boat is very heavy, the distance the 
boat moves is small.

Linear Momentum:
Linear momentum is defined as the mass of

the particle times the velocity of the particle:
  
r 
p = m

r 
v 

  • The momentum vector points in the same 
direction as the velocity vector.

  • We often drop the word "linear" and just say 
"momentum."



  • Unit: kg·m/s.
Newton's Second Law:
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  • This is the original Newton's 2nd Law.

Conservation of Momentum:
For a system of particles:
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If there is no net external force:
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  • Momentum of the system is not changing 

with time, i.e. momentum is conserved.
In equation (1):



If Fxext∑ = 0 ⇒
dpx

dt
= 0 ⇒ pxi

= px f

If Fyext
∑ = 0 ⇒

dpy

dt
= 0 ⇒ pyi

= pyf

If Fzext∑ = 0 ⇒
dpz

dt
= 0 ⇒ pzi

= pz f

  • If the sum of the external forces is zero in 
the x-direction but not zero in the
y-direction, then the x-component of the 
momentum is conserved but the
y-component is not conserved.

Problem 43 (p. 211):
A vessel at rest explodes into three pieces.

Two pieces of equal mass fly off perpendicular to
one another with the same speed of 30 m/s.
What are the direction and magnitude of the
velocity of the third piece if it has a mass three
times that of the other individual piece?



y

x
v

v

v

= 30 m/s

= 30 m/s1

2

3 = ?

pxi
= px f

0 = px3
+ px1

= 3mvx3
+ mvx1

vx3
= − 1

3 vx1

= −10 m / s

pyi
= py f

0 = py3
+ py2

= 3mvy3
+ mvy2

vy3
= − 1

3 vy2

= −10 m / s

v3 = vx3

2 + vy3

2

= 14 m / s (at 45°)



Problem 44 (p.211):
A 242-kg sumo wrestler running at 5.3 m/s

jumps onto a 2140-kg railroad flatcar initially at
rest. What is the speed of the flatcar if he then (a)
stands on it, (b) runs at 5.3 m/s relative to it, and
(c) turns and runs at 5.3 m/s relative to the
flatcar opposite his original direction?

before

after

  • The momentum of the system before and 
after the sumo wrestler jumps on the flatcar 
must be the same.



(a)                    pi = p f

mwviw + 0 = mw + mc( )v f

v f =
mwviw

mw + mc

= 0.54 m / s

(b)                    pi = p f

mwviw
+ 0 = mw v f + viw( )+ mcv f

0 = mwv f + mcv f

v f = 0 m / s

(c)                     pi = p f

mwviw + 0 = mw v f − viw( )+ mcv f

2mwviw
= mwv f + mcv f

v f =
2mwviw

mw + mc

= 1.08 m / s

Conceptual Problems:



(a) A man is standing in the middle of a large
frozen lake with a large bag of gold coins.
Because the lake is frictionless, no net external
force is acting on him and by conservation of
momentum he can't walk anywhere. How can
he get off the lake?

(b) An open freight car rolls friction free along a
horizontal track in a pouring rain that falls
vertically. As water accumulates in the car, its
speed:

   1. Increases
   2. Decreases
   3. Stays the same

System of Varying Mass -- Rocket:

(with respect 
to the rocket)

m m

-dm

t dtt

u

v

+ dm
+

v dv+



   In a rocket, the majority of its weight is in the
fuel. The rocket speeds up due to conservation of
momentum as the fuel is ejected backward.

pi = p f

mv = m + dm( ) v + dv( ) + −dm( ) v + dv − u( )
mv = mv + dmv + mdv + dmdv

 − dmv − dmdv + dmu

0 = mdv + dmu

−dmu = mdv                                                (1)

−
dm

dt
u = m

dv

dt
= ma

Let R = − dm

dt
 be the rate at which fuel is being

burned:

           Ru = ma

  • Ru is often referred to as the thrust of the
rocket.



The instantaneous velocity is given by (1): 
mdv = −udm

dv = −u
dm

m

dvvi

v f∫ = −u
dm
mmi

m f∫

v f − vi = −u 1n m f + u 1n mi

v f − vi = u1n
mi

m f

 

 
 

 

 
 

m f = mi − Rt

v f = vi + u1n
mi

mi − Rt

 
 
  

 
  

Example:
The Saturn V rocket used for the Apollo

mission to the moon had a first stage which
supplied a thrust of 34 MN (mega Newtons) and
burned fuel at a rate of 13.8 metric tons per
second for a total of 150 s. The initial mass of the
rocket was 2850 metric tons. Neglecting air



resistance and gravity, determine the velocity of
the rocket when the first stage burned out.
  • First we need to determine the velocity u of 

the exhaust:
Thrust = Ru

u = Thrust
R

= 3.4 ×107  N
13.8×103 kg / s

= 2464 m / s

v f = vi + u1n
mi

mi − Rt

 
 
  

 
 

= 0 + 2464 1n
2850

2850 −13.8 ×150
 
 

 
 

= 3212 m s 7200 mph( )

H The actual final sped is 2400 m/s (5400 mph) 
due to air friction.


