
Transistors Amplifiers

Common Emitter Amplifier ("Simplified")

• What's common (ground) in a common emitter amp?

The emitter! The emitter is connected (tied) to ground usually by a capacitor. To an AC signal this *looks* like the emitter is connected to ground.

What use is a Common Emitter Amp?

Amplifies the input voltage (the voltage at the base of the transistor).

The output voltage has the *opposite* polarity as the input voltage.

We want to calculate the following for the common emitter amp: Voltage Gain = V_{out}/V_{in} Input Impedance Output Impedance

DC Voltage Gain:

The voltage gain we are about to derive is for <u>small signals</u> only. A small signal is defined here to be in the range of a few mV.

As in all of what follows we assume that the transistor is biased on at its DC operating point. $V_{out} = V_{cc} - I_C R_C$

Since V_{cc} is fixed (its a DC power supply) we have for a change in output voltage V_{out}

 $\Delta V_{\rm out} = -\Delta I_{\rm C} R_{\rm C}$

In the above Δ stands for a small change in either the voltage or current. The input voltage is related the emitter voltage by a diode drop:

 $V_{in} = V_B$ = $V_E + 0.6 V$ $\Delta V_{in} = \Delta V_E$ We want to relate the emitter voltage to the emitter current (I_E): $V_E = I_E R_E$

$$\Delta V_{\rm E} = \Delta I_{\rm E} R_{\rm E}$$

We can relate the emitter and collector currents by remembering that for a transistor:

$$I_{\rm E} \sim I_{\rm C}$$

 $\Delta I_{\rm E} \sim \Delta I_{\rm C}$

For now we assume that the currents are equal and rewrite the above equation for the emitter in terms of the collector current.

$$\Delta V_{\rm E} = \Delta I_{\rm E} R_{\rm E} = \Delta I_{\rm C} R_{\rm E}$$

We also have $\Delta V_{\rm E} = \Delta V_{\rm in}$ so we can write the above as:

$$\Delta V_{\rm in} = \Delta I_{\rm C} R_{\rm E} = (-\Delta V_{\rm out} / R_{\rm C}) R_{\rm E}$$

Finally we can write the DC voltage gain (G) for a common emitter amp as:

Gain =
$$\frac{\Delta V_{\text{out}}}{\Delta V_{\text{in}}} = -\frac{R_{\text{C}}}{R_{\text{E}}}$$

Note: the minus sign in the gain means that the output is the opposite polarity as the input

 $(180^0 \text{ out of phase}).$

What happens if $R_E = 0$??? Do we have infinite gain? (must consider the AC case where $X_{CE} \ll R$)

NO, we get a new model for the transistor.

Remember that the base-emitter junction is a diode. We can describe the behavior of the junction using the Ebers-Moll equation:

$$I = I_{\rm s}[e^{qV/kT} - 1]$$

with $V = V_{\text{BE}}$ and kT/q = 25 mV at 20⁰C.

Neglecting the -1 term:

$$V_{\rm BE} = \frac{kT}{q} [\ln I - \ln I_{\rm s}]$$

We wish to find the dynamic resistance of the base-emitter junction,

$$r_{BE} = \frac{dV_{BE}}{dI}$$

= $\frac{kT}{qI}$
= $25 \times 10^{-3} / I$ (note : for 1 mA of current $r_{BE} = 25 \Omega$)
Gain = $-\frac{R_C}{r_{BE} + R_E \parallel X_{CE}}$

We can now write the gain for the case $R_{\rm E} = 0$ (neglecting $X_{\rm CE}$ too):

Gain = $-R_C / r_{BE} = -R_C (I_C / 25)$ with I_C measured in mA.

Note: Simpson (page 227) writes an equivalent formula for the gain using the transistor parameter β and a slightly different temperature, $T = 300^{\circ}$ K.

In terms of the hybrid parameter model (we will see this model soon)

$$r_{\rm BE} = h_{\rm ie} / h_{\rm fe}$$

Using r_{BE} to design a circuit is a dangerous practice as it depends on temperature and varies from transistor to transistor (even if they are the same type of transistor).

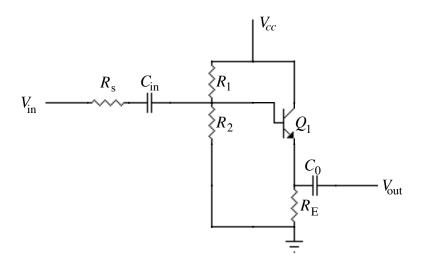
Input impedance

The input impedance of the common emitter amp can be calculated from the following equivalent circuit:

For AC case R_1 and R_2 are usually > R_{tin} so the input impedance is given by $R_{tin} = \beta R_E = \beta r_{BE} = 2500 \Omega$ for 1 mA of collector current and $\beta = 100$.

Output impedance

This is harder to calculate than the input impedance and only a hand waving argument for its value will be given here. The output impedance of the amp is the parallel impedance of $R_{\rm C}$ and the output impedance of the transistor looking into the collector junction. The collector junction is reversed biased and hence looks like a huge resistor compared to $R_{\rm C}$.


Thus the output impedance is simply $R_{\rm C}$ assuming that the load impedance (the thing the amp is hooked up to) is less than $R_{\rm C}$.

The Common Collector Amplifier:

Sometimes this amp is called an *emitter follower*.

What's common (ground) in a common collector amp?

The collector! The collector is connected (tied) to a DC power supply. To an AC signal this *looks* like the collector is connected to ground.

We want to calculate: voltage and current gain, and input and output impedance.

Voltage Gain: The input is the base and the output is taken at the emitter

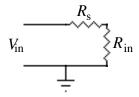
 $V_{\rm E} = V_{\rm B} - 0.6 \text{ V}$ $\Delta V_{\rm E} = \Delta V_{\rm B}$ $\Delta V_{\rm out} = \Delta V_{\rm in}$ Thus the amp has <u>unity gain</u>!

Current Gain: As always we can use Kirchhoff's current rule.

$$I_{\rm E} = I_{\rm B} + I_{\rm C}$$
$$= I_{\rm B}(\beta + 1)$$
$$\frac{\Delta I_{\rm E}}{\Delta I_{\rm B}} = \beta + 1$$
$$\frac{\Delta I_{\rm out}}{\Delta I_{\rm in}} = \beta + 1$$

Since a typical value for β is 100, there is lots of current gain.

Input impedance:


By definition the input impedance is

$$R_{\rm in} = \frac{\Delta V_{\rm in}}{\Delta I_{\rm in}}$$
$$= \frac{\Delta V_{\rm B}}{\Delta I_{\rm B}}$$
$$= \frac{\Delta V_{\rm E}}{\Delta I_{\rm E} / (\beta + 1)}$$
$$= \frac{\Delta I_{\rm E} R_{\rm E}}{\Delta I_{\rm E} / (\beta + 1)}$$

 $R_{\rm in} = (\beta + 1)R_E$

Since R_E is usually a few k Ω and β is typically 100, the input impedance of the common collector amp is large.

Output impedance: This is trickier to calculate than the input impedance. In the figure below we are looking *into* the amp:

 $R_{\rm in}$ is the input impedance of the transistor and $V_{\rm tin}$ is the voltage drop across it.

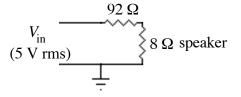
$$V_{\rm tin} = \frac{V_{\rm in}R_{\rm in}}{R_{\rm in} + R_{\rm s}}$$
$$\approx \frac{V_{\rm in}\beta R_{\rm E}}{\beta R_{\rm E} + R_{\rm s}}$$

If we now look from the other (output) side of the amp with R_{out} the output impedance of the transistor, the voltage drop at A is the same as the voltage at the base (V_B) since a common collector amp has unity gain. We can rewrite the equation into a voltage divider equation to find R_{out} .

$$V_{\rm in} \xrightarrow{R_{\rm out}} V_{\rm A}$$

$$V_{\rm in} \xrightarrow{R_{\rm out}} R_{\rm E}$$

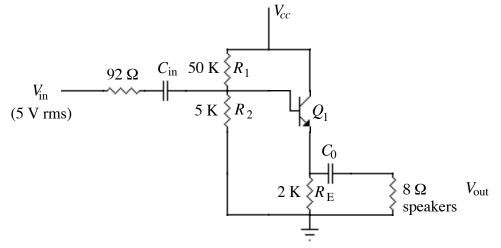
$$V_{\rm A} = \frac{V_{\rm in}R_{\rm E}}{R_{\rm E} + R_{\rm out}}$$


$$= V_{\rm tin} = \frac{V_{\rm in}\beta R_{\rm E}}{\beta R_{\rm E} + R_{\rm s}} = \frac{V_{\rm in}R_{\rm E}}{R_{\rm E} + R_{\rm s}/\beta} \text{ or } R_{\rm out} = \frac{R_{\rm s}}{\beta}$$

Thus R_{out} is small since β is typically 100.

What good is the common collector amp?

Example: In stereo systems very often loud speakers have 8 Ω input impedance. Assume that you want to drive the speakers with a 5 Volt 92 Ω voltage source. Lets look at 2 ways of driving the speakers and the power each method delivers to the speaker.


a) Hook the speakers directly to the voltage source:

The voltage delivered to the speaker is $(8/100)V_{in}$. The power delivered is:

 $P = V^2 / R = (5 \times 8 / 100)^2 / 8 = 0.02$ Watts (not much power!)

b) Use a common collector (emitter follower):

An AC signal at the input sees $\beta R_{\rm sp} = \beta 8 \ \Omega = 800 \ \Omega$.

From the speakers point of view the amp impedance looks like 92 Ω/β or about 1 Ω . The power delivered to the speaker can now be calculated:

$$V_{\rm sp} = (\beta 8 \ \Omega V_{\rm in}) / (\beta 8 \ \Omega + 92 \ \Omega) = 0.9 V_{\rm in} (\text{Volts})$$

$$P_{\rm sp} = V_{\rm sp}^2 / R_{\rm sp} = (0.9 \times 5)^2 / 8 = 2.5$$
 Watts (rms)

Thus there is more than a factor of a **hundred times** more power delivered to the speaker with an emitter follower amp.

Emitter Followers (common collectors) are used to match high impedances to low impedances.