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● 
Until the the mid-1970’s all known weak interaction processes could be described by the exchange of a 
charged, spin 1 boson, the W boson.  

 ■ 
Weak interactions mediated by a W-boson are called “charged current” interactions. 
■ 
A key prediction of the Glashow-Weinberg-Salam model was the existence of weak interactions 

mediated by the Z0, a neutral vector boson. 
  ◆ 
The Z0 did not change the flavor of the lepton or quark. 
◆ 
The GIM mechanism was invented to eliminate (first order) neutral current reactions where the flavor of 

the quark or lepton changed. 
◆ 
The measured branching fractions of K0 → µ+µ- and K+ → µ+ve provided evidence for the absence of 

flavor (strangeness) changing neutral currents: 

Weak Interactions & Neutral Currents 
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● 
The GIM mechanism eliminated strangeness changing neutral currents by adding a fourth quark (charm): 

 ■ 
Adding the two amplitudes together: 

  ◆ 
The strangeness changing terms are gone 
   but there are still neutral current terms! 
● 
1973: found first experimental evidence for neutral currents: 

 ■ 
This reaction cannot occur by W exchange! 
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● 
Where do the neutrinos come from? 
 ■ 
Proton-nucleon collisions produce lots of π's and K's which decay into neutrinos.   

 ■ 
Also get neutrinos from muon decay with branching ratio of 100%: 

● 
Rough calculation of vµ/ve ratio: 
 ■ 
neglect neutrinos from muon decay. 
 ■ 
assume we produce 10X as many pions as kaons in a proton-nucleus collision. 

 ■ 
Relatively easy to make a beam of high energy vµ’s, but hard to make a “pure” beam of high energy ve. 
 ■ 
To make a pure beam of ve’s use nuclear β decay which is below the energy threshold to produce µ’s. 

How to Produce a Neutrino Beam? 
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● 
Many other examples of neutral current interactions were discovered in the 1970’s 
  W exchange (charged current): vµ + N → µ- + X 
  Z exchange (neutral current):  vµ + N → vµ + X 
 ■ 
Neutrino cross section for neutral currents predicted to be 1/3 of charged current cross section. 

● 
“Observation of Neutrino-Like Interactions Without Muon or 
 Electrons in the Gargamelle Neutrino Experiment”, PL, V45, 1973. 
 ■ 
CC: charged current event (e or µ in final state) 
 ■ 
NC: neutral current event (no e or µ in final state) 
 ■ 
Gargamelle was the name of the bubble chamber (BC). 
 ■ 
Expect neutrino interactions to be uniformly distributed in BC. 
 ■ 
Background from neutrons and K0’s expected mostly in front of BC. 
 ■ 
Data in good agreement with expectation of Standard Model. 

Neutrino Induced Neutral Current Interactions 

Typical layout for a neutrino beam line. 

Distributions along beam axis 
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● 
1983: CERN was able to produce “real” Z’s and W’s and measure their properties: 
 ■  mass, branching fractions, and decay distributions. 
● 
1989: accelerators that could produce Z’s via e+e- → Z were online: 
 ■  SLC @ SLAC and LEP @ CERN 

● 
1999: CERN could produce W’s via e+e- → W+W-. 
● 
The model of Glashow, Weinberg and Salam becomes the Standard Model. 
 ■ 
Coupling of the Z to quarks and leptons is different than the coupling of the W to quarks and leptons. 
  ◆ 
W has a “V-A” coupling to quarks and leptons: γµ(1 - γ5) 
  ◆ 
Z coupling to quarks and leptons is much more complicated:  

     I3: third component of  “weak” isospin 
     f: fermion type 
     θW: “Weinberg angle” 
      ❍ 
a fundamental parameter of the standard model. 
       ❍ 
relates the “strength” of the W and Z boson couplings to the EM coupling:  
        gEM = gWsinθW 
        gEM = gZsinθWcosθW 

Neutral Current  
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M&S use gEM = gZcosθW, eq. 9.8 
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Neutral Current  
● 
The Standard Model gives us the following for the Z boson coupling to a fermion anti-fermion pair: 

● 
In the Standard Model the masses of the W and Z are related by: 

● 
Interesting new development (2001) with measurement of sin2θW: 
 ■ 
NuTeV is a Fermilab neutrino experiment.  
 ■  NuTeV result:  sin2θW = 0.2277 ± 0.0013(stat) ± 0.0009(syst) 
 ■  World average:  sin2θW = 0.2227 ± 0.0003 (mainly from LEP @ CERN) 
 ■ 
NuTeV result for sin2θW disagrees with previous measurements 

☞ 
may point to physics beyond Standard Model or the structure of a proton or neutron is 
fundamentally modified when it is bound in a nucleus. 
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