Quantum Chromodynamics

- Quantum Chromodynamics (QCD) is the theory of the strong interaction.
- QCD is a non-abelian gauge theory invariant under SU(3):
 - The interaction is governed by massless spin 1 objects called "gluons".
 - Gluons couple only to objects that have "color": quarks and gluons
 - There are three different color charges: red, green, blue.
 - QED: only one electric charge.
 - There are eight different gluons.
 - gluon exchange can change the color of a quark but not its flavor.
 - e.g. a red *u*-quark can become a blue *u*-quark via gluon exchange.

- Since gluons have color there are couplings involving 3 and 4 gluons.
 - QED: the 3 and 4 photon couplings are absent since the photon does not have an electric charge.

M&S 6.3, 7.1

QCD

- There are several interesting consequences of the SU(3), non-abelian nature of QCD:
 - Quarks are confined in space.
 - We can never "see" a quark the way we can an electron or proton.
 - Explains why there is no experimental evidence for "free" quarks.
 - All particles (mesons and baryons) are color singlets.
 - This "saves" the Pauli Principle.
 - In the quark model the Δ^{++} consists of 3 up quarks in a totally symmetric state.
 - Need something else to make the total wavefunction anti-symmetric \Rightarrow color!
 - Asymptotic freedom.
 - The QCD coupling constant changes its value ("runs") dramatically as function of energy.
 - quarks can appear to be "free" when probed by high energy (virtual) γ 's and yet be tightly bound into mesons and baryons (low energy).
 - In principle, the masses of mesons and baryons can be calculated using QCD.
 - Reality: very difficult to calculate (almost) anything with QCD.

QED vs QCD

L13: QCD

K.K. Gan

3

QED vs QCD

• In QED higher order graphs with virtual fermion loops play an important role in determining the strength of the interaction (coupling constant) as a function of distance scale (or momentum scale).

Examples of graphs with virtual fermion loops coupling to virtual photons.

• In QCD similar higher order graphs with virtual loops also play an important role in determining the strength of the interaction as a function of distance scale.

A graph with a virtual fermion loop coupling to virtual gluons.

• In QCD we can also have a class of graphs with gluon loops since the gluons carry color.

• Because of the graphs with gluon loops the QCD coupling constant behaves differently than the QED coupling constant at short distances.

QED vs QCD

• For both QED and QCD the effective coupling constant α depends on the momentum (or distance) scale that it is evaluated at:

$$\alpha(p^2) = \frac{\alpha(0)}{1 - X(p^2)}$$

$$\alpha(0)$$
 = fine structure constant $\approx 1/137$

• For QED it can be shown that:

$$X(p^2) = \left(\sum_{i=1}^{N_f} \left(\frac{q_i}{e}\right)^2\right) \frac{\alpha(\mu^2)}{3\pi} \ln\left(\frac{p^2}{\mu^2}\right)$$

QED:
$$X(p^2) > 0$$

- N_f : number of fundamental fermions with masses below $\frac{1}{2}|\mathbf{p}|$.
- *m*: mass of the heaviest fermion in the energy region being considered.
- The situation for QCD is very different than QED.
 - Due to the non-abelian nature of QCD:

$$X(p^{2}) = \frac{\alpha_{s}(\mu^{2})}{12\pi} \ln\left(\frac{p^{2}}{\mu^{2}}\right) [2N_{f} - 11N_{c}]$$

- N_f : number of quark flavors with masses below $\frac{1}{2}|\mathbf{p}|$.
- \vec{m} : mass of the heaviest quark in the energy region being considered.
- N_c : number of colors (3).
- For 6 flavors and 3 colors:

 $2N_f - 11N_c < 0$

- $\alpha(p^2)$ decreases with increasing momentum (or shorter distances).
- The force between quarks decreases at short distances and increases as the quarks move apart!

asymptotic freedom

K.K. Gan

L13: QCD

QCD and Confinement

- The fact that gluons carry color and couple to themselves leads to asymptotic freedom:
 - strong force decreases at very small quark-quark separation.
 - strong force increases as quarks are pulled apart.
- Does asymptotic freedom lead to quark confinement? Yes!
 - Quark confinement in SU(3) gauge theory can only be proved analytically for 2D (1 space+1 time).
 - Detailed numerical calculations show that even in 4D (3 space+time) quarks configured as mesons and baryons in color singlet states are confined.
- In SU(3)_{color} there are two conserved quantities (two diagonal generators). $Y^c =$ "color hypercharge"
 - I_3^c = the 3rd component of "color isospin"
 - The quark color hypercharge and isospin assignments are (M&S p.163)
 - $I_3^c Y^c$

r

- 1/2 1/3
- g -1/2 1/3
- b 0 -2/3

 Y^c and I_3^c change sign for anti-quarks

• By assuming that hadrons are color singlets we are requiring $Y^c = I_3^c = 0$:

Mesons:
$$\frac{1}{\sqrt{3}}(r\bar{r} + g\bar{g} + b\bar{b})$$

Baryons:
$$\frac{1}{\sqrt{6}}(r_1g_2b_3 - g_1r_2b_3 + b_1r_2g_3 - b_1g_2r_3 + g_1b_2r_3 - r_1b_2g_3)$$

anti-symmetric under color exchange

K.K. Gan

QCD and Confinement

• The color part of the quark wavefunction can be represented by:

$$r = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} g = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} b = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$$

• Using the M&S representation for the SU(3) generators (eq. 6.40b) we have:

$$I_3^c = \frac{1}{2}\lambda_3 = \frac{1}{2} \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad Y^c = \frac{1}{\sqrt{3}}\lambda_8 = \frac{1}{3} \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -2 \end{pmatrix}$$

- As shown in M&S eq. 6.38 only quark and anti-quark combinations with $Y^c = I_3^c = 0$ are of the form: $(3q)^p (q\overline{q})^n \ (p,n \ge 0)$
- Conventional baryons are the states with p = 1, n = 0 and mesons are states with p = 0, n = 1.
 - States such as *qqqq* and *qq* are forbidden by the singlet (confinement) requirement.
 - However, the following states are allowed:

 $qqqqqq \quad p = 2, n = 0$ $q\overline{q}q\overline{q} \quad p = 0, n = 2$

What about bound states of gluons -- "glueballs"?

 $qqqq\overline{q}$ p=1,n=1

- There have been many searches for quark bound states other than conventional mesons and baryons.
 - To date there is only evidence for the existence of the conventional mesons and baryons.

Quark Anti-Quark Bound States and QCD

- The spectrum of bounds states of heavy $q\bar{q}$ (= $c\bar{c}$ or $b\bar{b}$) states can be calculated in analogy with positronium (e^+e^-).
 - "QCD" calculations work best for non-relativistic (i.e. heavy states) where the potential can be approximated by:

$$V(r) = -\frac{a}{r} + br$$

Both *a* and *b* are constants calculated from fitting data or a model.

K.K. Gan

What is the Evidence for Color?

• One of the most convincing arguments for color comes from a comparison of the cross sections for the two processes:

 $e^+e^- \rightarrow \mu^+\mu^-$ and $e^+e^- \rightarrow q\bar{q}$

- If we ignore how the quarks turn into hadrons
 - amplitudes for the two reactions only differ by the charge of final state fermions (muons or quarks):

$$R = \frac{\sigma(e^+e^- \to q\bar{q})}{\sigma(e^+e^- \to \mu^+\mu^-)} = n_c \sum_{i=1}^n Q_i^2$$

$$n_c = 1 \text{ if the quarks have no color}$$

Assume the CM energy of the reaction is large compared to the fermion masses.

- $n_c = 3$ if each quark has three colors
- For example, above *b*-quark threshold but below top-quark threshold we would expect:

QCD, Color, and the Decay of the π^0

- 1949-50 The decay $\pi^0 \rightarrow \gamma\gamma$ calculated and measured by Steinberger.
- 1967 Veltman calculates the π^0 decay rate using modern field theory and finds that π^0 does no decay!
- 1968-70 Adler, Bell, and Jackiw "fix" field theory and now π^0 decays but decay rate is off by factor of 9.
- 1973-4 Gell-Mann and Fritzsch (+others) use QCD with 3 colors and calculate the correct π^0 decay rate.

Triangle Diagram: Each color contributes one amplitude. Three colors changes the decay rate by 9.

QCD and Jets

- QCD predicts that we will not see isolated quarks.
 - hadrons produced in a high energy collision should have some "memory" of its parent quark (or gluon).
 - About 30 years ago someone used the term "jet" to describe the collimation of a group of hadrons as they are Lorentz boosted along the direction of the parent quark.

An example of $e^+e^- \rightarrow$ hadrons with three jets. The lines represent the trajectories of charged tracks in the magnetic field of the central detector of the JADE experiment. The beams are \perp to the page.

- Again we can compare muon pair production to quark production.
 - The angular distribution $(\cos\theta)$ with respect to the beam line ("z-axis") for the μ is:

$$\frac{d\sigma}{d\cos\theta} = A(1 + \cos^2\theta) \text{ for } e^+e^- \to \mu^+\mu^-$$

- Since the parent quarks are also spin 1/2 fermions
 - expect the quarks to have the same angular distribution as muons.
- We would also expect the momentum vector of the quark jets to have this same angular distribution.

QCD and Jets

- Perhaps even more interesting than the "two jet" events are "three jet" events.
 - One of the jets is due to a gluon forming hadrons, the other two jets are from the parent quarks.

Using QCD it is possible to calculate the angular distribution (cosθ) of three jets with respect to "z-axis".
 Data (from the TASSO experiment) is in verv good agreement with the QCD.

