Feynman Diagrams

- Pictorial representations of amplitudes of particle reactions, i.e scatterings or decays.
- Greatly reduce the computation involved in calculating rate or cross section of a physical process, e.g.

- Like electrical circuit diagrams, every line in the diagram has a strict mathematical interpretation.
- For details of Feynman diagram calculation,
 - take a Advanced Quantum or 880.02 course
 - see Griffiths (e.g. sections 6.3, 6.6, and 7.5)
 - Bjorken & Drell (Relativistic Quantum Mechanics).

1

E= maiste

Feynman and his diagrams

L3: Feynman Diagram

Scattering Amplitute

- Each Feynman diagram represents an amplitude (*M*).
- Quantities such as cross sections and decay rates (lifetimes) are proportional to $|M|^2$.

• The transition rate for a process can be calculated with time dependent perturbation theory using Fermi's Golden Rule: In lowest order perturbation theory *M* is the

transition rate =
$$\frac{2\pi}{\hbar} |M|^2 \times [\text{phase space}]$$

• The differential cross section for two body scattering (e.g. $pp \rightarrow pp$) in the CM frame is:

$$\frac{d\sigma}{d\Omega} = \frac{1}{4\pi^2} \frac{q_f^2}{v_i v_f} \left| M \right|^2$$

 v_i = speed of initial state particle

 v_f = speed of final state particle

 q_f = final state momentum

• The decay rate (Γ) for a two-body decay (e.g. $K^0 \rightarrow \pi^+\pi$) in CM is given by:

$$\Gamma = \frac{S|\vec{p}|}{8\pi\hbar m^2 c} \left| M \right|^2$$

m = mass of parent

p = momentum of decay particle

S = statistical factor (fermions/bosons)

- $|M|^2$ cannot be calculated exactly in most cases.
- Often *M* is expanded in a power series.
- Feynman diagrams represent terms in the series expansion of *M*. K.K. Gan L3: Feynman Diagram

In lowest order perturbation theory M is the Fourier transform of the potential, M&S B.20-22, p295, "Born Approximation", M&S 1.32, p20.

M&S B.29, p350

Griffiths 6.32

Some Rules of Feynman Diagrams

• Feynman diagrams plot time vs space:

- Solid lines are charged fermions:
 - particle: arrow in same direction as time
 - antiparticle: arrow opposite direction as time
- Wavy (or dashed) lines are photons.
- At each vertex there is a coupling constant.
- Quantum numbers are conserved at a vertex:
 - electric charge, lepton number...
- "Virtual" particles do not conserve *E* and *p*.
 - Virtual particles are internal to diagram(s).
 - $\gamma: E^2 p^2 \neq 0$ (off "mass shell")
 - In all calculations we integrate over the virtual particles 4-momentum (4D integral).
- Photons couple to electric charge.
 - No photons only vertices.

Higher Order Feynman Diagrams

- We classify diagrams by the order of the coupling constant:
 - Bhabha scattering: $e^+e^- \rightarrow e^+e^-$:

- Since $\alpha_{\text{QED}} = 1/137$, higher order diagrams should be corrections to lower order diagrams.
 - This is just perturbation Theory!
 - This expansion in the coupling constant works for QED since $\alpha_{\text{QED}} = 1/137$.
 - Does not work well for QCD where $\alpha_{\text{QCD}} \sim 1$

Same Order Feynman Diagrams

- For a given order of the coupling constant there can be many diagrams.
 - Moller scattering $e^-e^- \rightarrow e^-e^-$:

- Must add/subtract diagram together to get the total amplitude.
 - Total amplitude must reflect the symmetry of the process.
 - $e+e- \rightarrow \gamma \gamma$: identical bosons in final state

- Moller scattering $e^-e^- \rightarrow e^-e^-$: identical fermions in initial and final state
 - Amplitude anti-symmetric under exchange of (1,2) and (a,b)

5

Relationship between Feynman Diagrams

• Feynman diagrams of a given order are related to each other:

Anomalous Magnetic Moment

- Calculation of Anomalous Magnetic Moment of electron is one of the great triumphs of QED.
 - In Dirac's theory a point like spin 1/2 object of electric charge q and mass m has a magnetic moment:

 $\boldsymbol{\mu} = q\mathbf{S}/m.$

- In 1948 Schwinger calculated the first-order radiative correction to the naïve Dirac magnetic moment of the electron.
 - Radiation and re-absorption of a single virtual photon contributes an anomalous magnetic moment:

Basic interaction with B field photon

First order correction

- Radiation correction modified the Dirac Magnetic Moment to:
 - $\boldsymbol{\mu} = g(q\mathbf{S}/m)$
 - The deviation from the Dirac-ness: $a_e = (g_e 2)/2$
 - ★ The electron's anomalous magnetic moment (a_e) is now known to 4 parts per billion.
 - Current theoretical limit is due to 4th order corrections (> 100 10-dimensional integrals).
 - The muons's anomalous magnetic moment (a_{μ}) is known to 1.3 parts per million.
 - ★ Recent screw up with sign convention on theoretical a_{μ} calculations caused a stir! K.K. Gan L3: Feynman Diagram

7