Conservation Laws

Read M&S Chapters 2, 3, and 5

- When something doesn't happen there is usually a reason!
 - The following decays have never been observed despite years of searching:

 $n \to pe^ p \to ne^+ v_e$

$$\mu^- \rightarrow e^- \gamma$$

- That something is a conservation law!
- A conserved quantity is related to a symmetry in the Lagrangian of the interaction. (Noether's Theorem)
 - A symmetry is associated with a transformation that leaves the Lagrangian invariant.
 - time invariance leads to energy conservation
 - translation invariance leads to linear momentum conservation
 - rotational invariance leads to angular momentum conservation
 - Familiar conserved quantities that are sacred:

Quantity	Strong	EM	Weak
Energy	Y	Y	Y
Linear momentum	Y	Y	Y
Angular momentum	Y	Y	Y
Electric charge	Y	Y	Y

Quantity	Strong	EM	Weak	Comments
Baryon number	Y	Y	Y	no $p \rightarrow \pi^+ \pi^0$
Lepton number	Y	Y	Y	no $\mu \rightarrow e^{-\gamma}$
Тор	Y	Y	N	discovered 1995
Bottom	Y	Y	Ν	discovered 1977
Charm	Y	Y	N	discovered 1974, Nobel 1976
Strangness	Y	Y	Ν	discovered 1947
Isospin	Y	N	N	proton = neutron $(m_u \approx m_d)$
Charge conjugation (<i>C</i>)	Y	Y	Ν	particle ⇔ anti-particle
Parity (P)	Y	Y	Ν	Nobel 1957
CP or Time (T)	Y	Y	Ν	small violation, Nobel 1980
CPT	Y	Y	Y	sacred
G parity	Y	Ν	N	works for pions only

Other Conserved Quantities

• Neutrino oscillations give first evidence of lepton number violation!

- These experiments were designed to look for baryon number violation!!
- Classic example of <u>strangeness violation</u>: $\Lambda \rightarrow p\pi (S = -1 \rightarrow S = 0)$
- Very subtle example of <u>*CP* violation</u>:

* expect:
$$K^0_{long} \rightarrow \pi^+ \pi^0 \pi$$

★ observe: $K^0_{long} \rightarrow \pi^+ \pi \approx 2 \ge 10^{-3}$

K.K. Gan L4: Conservation Laws

Some Sample Reactions

- $v_{\mu}+p \rightarrow \mu^{+}+n$:
 - What force is involved here?
 - Must be weak interaction since neutrino is involved.
 - Is this reaction allowed or forbidden?
 - Consider quantities conserved by weak interaction: lepton #, baryon #, q, E, p, L etc. muon lepton number : 1+0 ≠ −1+0

baryon number : 0+1=0+1

- Reaction not allowed!
- $v_e + p \rightarrow e^- + \pi^+ + p$:
 - Must be weak interaction since neutrino is involved.
 - Conserves all weak interaction quantities electron lepton number : 1+0=1+0+0

baryon number : 0 + 1 = 0 + 0 + 1

- Reaction is allowed!
- $\Lambda \rightarrow e^- + \pi^+ + \overline{v}_e$:

Must be weak interaction since neutrino is involved.

electron lepton number : 0 = 1 + 0 - 1

baryon number : $1 \neq 0 + 0 + 0$

Reaction is not allowed!

•
$$K^+ \rightarrow \mu^+ + \pi^0 + v_{\mu}$$

Must be weak interaction since neutrino is involved.

muon lepton number : 0 = -1 + 0 + 1

Reaction is allowed!

K.K. Gan

More Reaction Examples

- Let's consider the following reactions to see if they are allowed: a) $K^+p \rightarrow \Lambda \pi^+\pi^+$ b) $K^-p \rightarrow \Lambda n$ c) $K^0 \rightarrow \pi^+\pi$ $K^+ = \bar{s}u$
 - First we should figure out which forces are involved in the reaction.
 - All three reactions involve only strongly interacting particles (no leptons)
 - it is natural to consider the strong interaction first.
 - a) Not possible via strong interaction since strangeness is violated $(1 \rightarrow -1)$. $\Lambda = usd$
 - b) OK via strong interaction (e.g. strangeness $-1 \rightarrow -1$).
 - c) Not possible via strong interaction since strangeness is violated $(1 \rightarrow 0)$.
 - ★ If a reaction is possible through the strong force then it will happen that way!
 - ★ Next, consider if reactions a) and c) could occur through the electromagnetic interaction.
 - Since there are no photons involved in this reaction (initial or final state) we can neglect EM.
 - EM conserves strangeness.
 - ★ Next, consider if reactions a) and c) could occur through the weak interaction.
 - Here we must distinguish between interactions (collisions) as in a) and decays as in c).
- The probability of an interaction (e.g. a)) involving only baryons and mesons occurring through the weak interactions is so small that we neglect it.
 - Reaction c) is a decay.
 - Many particles decay via the weak interaction through strangeness changing decays.
 - this can (and does) occur via the weak interaction.
 - To summarize:
 - a) not strong, weak, and EM
 - b) strong
 - c) not strong and EM, OK via weak interaction
- Don't even bother to consider Gravity!

K.K. Gan

L4: Conservation Laws

 $K^{-} = s\overline{u}$

 $K^0 = s\overline{d}$

Conserved Quantities and Symmetries

- Every conservation law corresponds to an invariance of the Hamiltonian (or Lagrangian) of the system under some transformation.
 - ★ We call these invariances symmetries.
- There are two types of transformations: continuous and discontinuous.
 - Continuous: give additive conservation laws

 $x \rightarrow x + dx$ or $\theta \rightarrow \theta + d\theta$

- Examples of conserved quantities:
 - ★ momentum
 - ★ electric charge
 - ★ baryon number
- Discontinuous: give multiplicative conservation laws
 - Parity transformation: $(x, y, z) \rightarrow (-x, -y, -z)$
 - Charge conjugation (particle \Leftrightarrow antiparticle): $e^- \Leftrightarrow e^+$
 - Examples of conserved quantities:
 - ★ Parity (in strong and EM)
 - ★ Charge conjugation (in strong and EM)
 - ★ Parity and charge conjugation (in strong, EM, almost always in weak)

Momentum Conservation

- Example of classical mechanics and momentum conservation.
 - In general a system can be described by the following Hamiltonian:

 $H = H(p_i, q_i, t)$ p_i = momentum coordinate q_i = space coordinate t = time coordinate

• Consider the variation of *H*:

$$dH = \sum_{i=1}^{3} \frac{\partial H}{\partial q_i} dq_i + \sum_{i=1}^{3} \frac{\partial H}{\partial p_i} dp_i + \frac{\partial H}{\partial t} dt$$

• For a space translation (q_i) only, $dp_i = dt = 0$:

$$dH = \sum_{i=1}^{3} \frac{\partial H}{\partial q_i} dq_i$$

• Using Hamilton's canonical equations:

$$\dot{q}_{i} = \frac{\partial q_{i}}{\partial t} = \frac{\partial H}{\partial p_{i}} \qquad \dot{p}_{i} = \frac{\partial p_{i}}{\partial t} = \frac{\partial H}{\partial q_{i}}$$
$$dH = \sum_{i=1}^{3} \frac{\partial H}{\partial q_{i}} dq_{i} = \sum_{i=1}^{3} \dot{p}_{i} dq_{i}$$

• If H is invariant under a translation (dq) then by definition we must have:

$$dH = \sum_{i=1}^{3} \dot{p}_i dq_i = 0$$
$$\dot{p}_1 = \dot{p}_2 = \dot{p}_3 = 0$$
$$\frac{dp_1}{dt} = \frac{dp_2}{dt} = \frac{dp_3}{dt} = 0$$

Each *p* component is constant in time and momentum is conserved.

K.K. Gan

Conserved Quantities and Quantum Mechanics

- In quantum mechanics quantities whose operators commute with the Hamiltonian are conserved.
- The expectation value of an operator *Q*: $\langle Q \rangle = \int \Psi^* Q \Psi d\bar{x}$ with $\Psi = \Psi(\bar{x},t)$ and $Q = Q(\bar{x},\bar{x},t)$
- How does <*Q*> change with time?

$$\frac{d}{dt}\langle Q\rangle = \frac{d}{dt}\int \Psi^* Q \Psi d\overline{x} = \int \frac{\partial \Psi^*}{\partial t} Q \Psi d\overline{x} + \int \Psi^* \frac{\partial Q}{\partial t} \Psi d\overline{x} + \int \Psi^* Q \frac{\partial \Psi}{\partial t} d\overline{x}$$

- Recall Schrodinger's equation: $i\hbar \frac{\partial \Psi}{\partial t} = H\Psi$ and $-i\hbar \frac{\partial \Psi^*}{\partial t} = \Psi^* H^+$ $H^+ = H^{*T}$ = Hermitian conjugate of H
- Substituting the Schrodinger equation into the time derivative of *Q*:

If $\partial Q/\partial t = 0$ and [Q,H] = 0 then $\langle Q \rangle$ is conserved.

Conservation of Electric Charge and Gauge Invariance

- Conservation of electric charge: $\Sigma Q_i = \Sigma Q_f$
- Evidence for conservation of electric charge:
 - Consider reaction $e^- \rightarrow \gamma v_e$:
 - Violates charge conservation but not lepton number or any other quantum number.
 - If the above transition occurs in nature then we should see x-rays from atomic transitions.
 - The absence of such x-rays leads to the limit: ٠ $\tau_e > 2 \times 10^{22}$ years
- There is a connection between charge conservation, gauge invariance, and quantum field theory.
- A Lagrangian that is invariant under a transformation $U = e^{i\theta}$ is said to be gauge invariant.
- There are two types of gauge transformations:

 $\theta = \theta(\mathbf{x}, t)$ θ is an operator local: global: θ = constant, independent of (*x*,*t*)

- Conservation of electric charge is the result of global gauge invariance.
- Photon is massless due to local gauge invariance.
- Recall Maxwell's Equations are invariant under a gauge transformation: vector potential : $\overline{A'} \rightarrow \overline{A} + \nabla \Lambda$

scalar potential: $\phi' \rightarrow \phi - \frac{1}{2} \frac{\partial \Lambda}{\partial A}$

 $\Lambda(\bar{x},t)$: arbitrary scalar function

New set of potential also yields the same fields that particles interact with:

$$\overline{E} = -\nabla \phi - \frac{1}{c} \frac{\partial A}{\partial t}$$

$$\overline{B} = \nabla \times \overline{A}$$
K.K. Gan
Maxwell's EQs are
locally gauge invariant.
L4: Conservation Laws

rvation Laws

Gauge invariance and Group Theory

- Consider a transformation (U) that acts on a wavefunction (ψ): $\psi' = U\psi$
 - Let U be a continuous transformation then U is of the form:
 - $U = e^{i\theta}$ θ is an operator.
 - If θ is a Hermitian operator $(\theta = \theta^+ = \theta^{*T})$ then U is a unitary transformation:

$$U = e^{i\theta} \quad U^+ = (e^{i\theta})^{*T} = e^{-i\theta} e^{-i\theta} \Rightarrow UU^+ = e^{i\theta}e^{-i\theta} = 1$$

- U is not a Hermitian operator since $U \neq U^+$
- In the language of group theory θ is said to be the generator of U
 - There are four properties that define a group:
 - Closure: if A and B are members of the group then so is AB
 - Identity: for all members of the set *I* exists such that IA = A
 - Inverse: the set must contain an inverse for every element in the set $AA^{-1} = I$
 - Associativity: if A, B, C are members of the group then A(BC) = (AB)C
 - If $\theta = (\theta_1, \theta_2, \theta_3...)$ then the transformation is "Abelian" if:

 $U(\theta_1)U(\theta_2) = U(\theta_2)U(\theta_1)$

- The operators commute.
- If the operators do not commute then the group is non-Abelian.
- The transformation with only one θ forms the unitary Abelian group U(1).
- The Pauli (spin) matrices generate the non-Abelian group SU(2):

$$\sigma_x = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \quad \sigma_y = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix} \quad \sigma_z = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

S = "special" = unit determinant U = unitary N = dimension (e.g. 2)

K.K. Gan

Global Gauge Invariance and Charge Conservation

- The relativistic Lagrangian for a free electron is:
 - $L = i\overline{\psi}\gamma_u\partial^u\psi m\overline{\psi}\psi \qquad \hbar = c = 1$
 - ψ : the electron field (a 4 component spinor)
 - m: the electron mass

This Lagrangian gives the Dirac equation: $i\hbar\gamma^{\mu}\partial_{\mu}\psi - mc\psi = 0$

 γ_u : "gamma" matrices, four $(u = 1, 2, 3, 4) 4 \times 4$ matrices that satisfy $\gamma^u \gamma^v + \gamma^v \gamma^u = 2g^{uv}$ $\partial^u = (\partial^0, \partial^1, \partial^2, \partial^3) = (\partial/\partial t, \partial/\partial x, \partial/\partial y, \partial/\partial z)$

Let's apply a global gauge transformation to *L*: $\psi' = e^{i\lambda}\psi \quad \overline{\psi}' = \overline{\psi}e^{-i\lambda}$ $L' = i\overline{\psi}'\gamma_u\partial^u\psi' - m\overline{\psi}'\psi'$ $L' = i\overline{\psi}e^{-i\lambda}\gamma_u\partial^u e^{i\lambda}\psi - m\overline{\psi}e^{-i\lambda}e^{i\lambda}\psi$ $L' = i\overline{\psi}e^{-i\lambda}e^{i\lambda}\gamma_u\partial^u\psi - m\overline{\psi}e^{-i\lambda}e^{i\lambda}\psi \quad \text{since } \lambda \text{ is a constant}$ $L' = i\overline{\psi}\gamma_u\partial^u\psi - m\overline{\psi}\psi = L$ $\blacksquare \text{ By Noether's Theorem there must be a conserved quantity associated with this symmetry!}$

K.K. Gan

The Dirac Equation on One Page

• The Dirac equation:
$$i\hbar\gamma^{\mu}\partial_{\mu}\Psi - mc\Psi = 0$$

 $i\hbar[\gamma^{0}\frac{\partial\Psi}{\partial t} - \gamma^{1}\frac{\partial\Psi}{\partial x} - \gamma^{2}\frac{\partial\Psi}{\partial y} - \gamma^{3}\frac{\partial\Psi}{\partial z}] - mc\Psi = 0$
 $i\hbar[\begin{pmatrix}1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & -1 & 0\\ 0 & 0 & 0 & -1 \end{pmatrix} \frac{\partial\Psi}{\partial t} - \begin{pmatrix}0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0\\ 0 & -1 & 0 & 0\\ -1 & 0 & 0 & 0 \end{pmatrix} \frac{\partial\Psi}{\partial x} - \begin{pmatrix}0 & 0 & 0 & -i\\ 0 & 0 & i & 0\\ 0 & i & 0 & 0\\ -i & 0 & 0 & 0 \end{pmatrix} \frac{\partial\Psi}{\partial y} - \begin{pmatrix}0 & 0 & 1 & 0\\ 0 & 0 & 0 & -1\\ -1 & 0 & 0 & 0\\ 0 & 1 & 0 & 0\\ 0 & 1 & 0 & 0 \end{pmatrix} \Psi = \begin{pmatrix}0\\ 0\\ 0\\ 0\\ 0\\ 0 & 0 & 1 & 0\\ 0\\ 0 & 0 & 0 & 1 \end{pmatrix}$

• A solution (one of 4, two with +*E*, two with -*E*) to the Dirac equation is:

$$\Psi = \sqrt{(|E| + mc^2)/c} \begin{pmatrix} 1 \\ 0 \\ \frac{cp_z}{E + Mc^2} \\ \frac{c(p_x + ip_y)}{E + Mc^2} \end{pmatrix} \exp[-(i/\hbar)(Et - \overline{p} \bullet \overline{r}] = U \exp[-(i/\hbar)(Et - \overline{p} \bullet \overline{r}]$$

- The function U is a (two-component) spinor and satisfies the following equation: $(\gamma^{u} p_{u} - mc)U = 0$
- Spinors are most commonly used in physics to describe spin 1/2 objects:

$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ represents spin up } (+\hbar/2) \text{ while } \begin{pmatrix} 0 \\ 1 \end{pmatrix} \text{ represents spin down } (-\hbar/2)$$

• Spinors also have the property that they change sign under a 360⁰ rotation!

K.K. Gan

Global Gauge Invariance and Charge Conservation

- We need to find the quantity that is conserved by our symmetry.
- In general if a Lagrangian density, $L = L(\phi, \partial \phi / \partial x_u)$ with a field ϕ , is invariant under a transformation:

$$\delta L = 0 = \frac{\partial L}{\partial \phi} \delta \phi + \frac{\partial L}{\partial \frac{\partial \phi}{\partial x_u}} \delta \frac{\partial \phi}{\partial x_u}$$

Result from field theory

For our global gauge transformation we have: $\phi' = e^{i\lambda}\phi \approx (1+i\lambda)\phi$

$$\delta \phi = \phi' - \phi = (1 + i\lambda)\phi - \phi = i\lambda\phi$$
 and $\delta \frac{\partial \phi}{\partial x_u} = \frac{\partial \delta \phi}{\partial x_u} = i\lambda \frac{\partial \phi}{\partial x_u}$

Plugging this result into the equation above we get (after some algebra...)

$$\delta L = 0 = \frac{\partial L}{\partial \phi} \delta \phi + \frac{\partial L}{\partial \frac{\partial \phi}{\partial x_u}} \delta \frac{\partial \phi}{\partial x_u} = \left[\frac{\partial L}{\partial \phi} - \frac{\partial}{\partial x_u} (\frac{\partial L}{\partial \frac{\partial \phi}{\partial x_u}}) \right] \delta \phi + \frac{\partial}{\partial x_u} \left[\frac{\partial L}{\partial \frac{\partial \phi}{\partial x_u}} \delta \phi \right]$$

- The first term is zero by the Euler-Lagrange equation.
- The second term gives us a continuity equation.

E-L equation in 1D:

$$\frac{\partial L}{\partial x} - \frac{d}{dt} \left(\frac{\partial L}{\partial \dot{x}} \right) = 0$$

Global Gauge Invariance and Charge Conservation

• The continuity equation is:

$$\frac{\partial}{\partial x_u} \left[\frac{\partial L}{\partial \frac{\partial \phi}{\partial x_u}} \delta \phi \right] = \frac{\partial}{\partial x_u} \left[\frac{\partial L}{\partial \frac{\partial \phi}{\partial x_u}} i \lambda \phi \right] = \frac{\partial J^u}{\partial x_u} = 0 \quad \text{with } J^u = i\lambda \frac{\partial L}{\partial \frac{\partial \phi}{\partial x_u}} \phi \quad \text{Result from quantum field theory}$$

• Recall that in classical E&M the (charge/current) continuity equation has the form:

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \vec{J} = 0 \qquad (J^0, J^1, J^2, J^3) = (\rho, J_x, J_y, J_z)$$

• Also, recall that the Schrodinger equation gives a conserved (probability) current:

$$i\hbar \frac{\partial \psi}{\partial t} = -\frac{\hbar^2}{2m} \nabla^2 \psi + V \psi$$
$$\Rightarrow \begin{cases} \rho = c \psi^* \psi \\ \vec{J} = -i\hbar c [\psi^* \nabla \psi - (\nabla \psi^*) \psi] \end{cases}$$

If we use the Dirac Lagrangian in the above equation for *L* we find: $J^{u} = -\lambda \overline{\psi} \gamma^{u} \psi$

Conserved quantity

- This is just the relativistic electromagnetic current density for an electron.
- The electric charge is just the zeroth component of the 4-vector: $Q = \int I^0 d\vec{x}$

$$Q = \int J^0 d\vec{x}$$

If there are no current sources or sinks ($\nabla \bullet J = 0$) charge is conserved as:

$$\frac{\partial J^{u}}{\partial x_{u}} = 0 \quad \Longrightarrow \frac{\partial J^{0}}{\partial t} = 0$$

Local Gauge Invariance and Physics

- Some consequences of local gauge invariance:
 - ★ For QED local gauge invariance implies that the photon is massless.
 - ★ In theories with local gauge invariance a conserved quantum number implies a long range field.
 - e.g. electric and magnetic field
- There are other quantum numbers that are similar to electric charge (e.g. lepton number, baryon number) that don't seem to have a long range force associated with them!
 - Perhaps these are not exact symmetries!
 - Evidence for neutrino oscillation implies lepton number violation.
 - ★ Theories with local gauge invariance can be renormalizable
 - can use perturbation theory to calculate decay rates, cross sections etc.
- Strong, weak and EM theories are described by local gauge theories.
 - \star U(1) local gauge invariance first discussed by Weyl in 1919
 - ★ SU(2) local gauge invariance discussed by Yang & Mills in 1954 (electro-weak) $\psi' = e^{i\tau \cdot \lambda(x,t)}\psi$
 - τ is represented by the 2x2 Pauli matrices (non-Abelian)
 - * SU(3) local gauge invariance used to describe strong interaction (QCD) in 1970's $\psi' = e^{i\tau \cdot \lambda(x,t)}\psi$
 - τ is represented by the 3x3 matrices of SU(3) (non-Abelian)

Local Gauge Invariance and QED

• Consider the case of local gauge invariance, $\lambda = \lambda(x,t)$ with transformation:

$$\psi' = e^{i\lambda(\bar{x},t)}\psi \quad \overline{\psi}' = \overline{\psi}e^{-i\lambda(\bar{x},t)}$$

- The relativistic Lagrangian for a free electron is not invariant under this transformation. $L = i\overline{\psi}\gamma_u\partial^u\psi - m\overline{\psi}\psi$ $\hbar = c = 1$
- The derivative in the Lagrangian introduces an extra term: $\partial \psi' = e^{i\lambda(\vec{x},t)}\partial^u \psi + e^{i\lambda(\vec{x},t)}\psi \partial^u [i\lambda(\vec{x},t)]$

• We can make a Lagrangian that is locally gauge invariant by adding an extra piece to the free electron Lagrangian that will cancel the derivative term.

- We need to add a vector field A_u which transforms under a gauge transformation as: $A_u \rightarrow A_u + \partial_u \Lambda(\vec{x},t)$ with $\lambda(\vec{x},t) = -q\Lambda(\vec{x},t)$ (for electron q = -|e|)
- The new, locally gauge invariant Lagrangian is:

$$L = i\overline{\psi}\gamma_u\partial^u\psi - m\overline{\psi}\psi - \frac{1}{16}F^{uv}F_{uv} - q\overline{\psi}\gamma_u\psi A^u$$

Locally Gauge Invariance QED Lagrangian

- Several important things to note about the above Lagrangian:
 - A_u is the field associated with the photon.
 - The mass of the photon must be zero or else there would be a term in the Lagrangian of the form: $m_{\nu}A_{u}A^{u}$
 - However, $A_u A^u$ is not gauge invariant!
 - $F_{uv} = \partial_u A_v \partial_v A_u$ and represents the kinetic energy term of the photon.
 - The photon and electron interact via the last term in the Lagrangian.
 - This is sometimes called a current interaction since:

 $q\overline{\psi}\gamma_u\psi A^u = J_u A^u$

- In order to do QED calculations we apply perturbation theory (via Feynman diagrams) to $J_u A_u$ term.
- The symmetry group involved here is unitary and has one parameter $\Rightarrow U(1)$

