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● 
Isospin is a continuous symmetry invented by Heisenberg: 
 ■ 
Explain the observation that the strong interaction does not distinguish between neutron and proton. 
  ◆ 
Example: the mass difference between the two is very small: 
    (mn - mp)/mn ≈ 10-3 

 ■ 
Heisenberg’s thought was that if you could turn off electromagnetism then mn = mp. 
 ■ 
We now believe that that isospin symmetry is due the near equality of the up and down quarks: 
   mu ≈ md 

● 
We postulate that isospin is conserved in the strong interaction, but not in the electromagnetic or weak. 
 ■ 
Strong interaction does not feel (or “couple”) to electric charge. 
  ☞ 
Expect the strong interaction of the proton and neutron to be the same. 
  ☞ 
Isospin operator (I) commutes with the strong Hamiltonian, but not electromagnetic Hamilatonian. 
  
❍ 
 [Hs,I] = 0 
  
❍ 
 [HEM,I] ≠ 0 
● 
When constructing the wavefunction of a system under the strong interaction 
 ■ 
we must take isospin into consideration to make sure we have correct (boson or fermion) symmetry.  
 ☞ 
This generalizes the Pauli Principle. 
● 
When constructing baryons (3 quark states) and mesons (quark anti-quark states) 
 ■ 
we take into account the isospin of the quarks: 
  ◆ 
u: I = 1/2, I3 = +1/2 
  ◆ 
d: I = 1/2, I3 = -1/2 
  ◆ 
s, c, t, b: I = 0 

Isospin 
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● 
Mathematically, isospin is identical to spin. 
 ☞ 
We combine isospin the same way we combine angular momentum in quantum mechanics. 
 ■ 
Like angular momentum, isospin can be integral or half integral: 
   Particles    Isospin (I) 
   Λ0 or Ω-          0 

 
 
(p,n) or (K0, K+)   1/2 

 
 
π+, π0, π-     1 

 
 
Δ++, Δ+, Δ0, Δ-   3/2 

 ■ 
Like the proton and neutron: 
  ◆ 
the three pion states (π+, π0, π-) are really one particle under the strong interaction. 
   ❍ 
Split by the electromagnetic interaction. 
● 
Isospin states are labeled by the total isospin (I) and the third component of isospin (I3). 
 ◆ 
Just like ordinary angular momentum states. 
      Particles      Isospin state |I,I3> 

    
 
Λ0 (uds) or Ω- (sss)        |0,0> 
   p (uud) or K+     |1/2,1/2> 
   n (udd) or K0      |1/2,-1/2> 

     
 
π+         |1,1> 

     
 
π0         |1,0> 

     
 
π- 
 
       |1,-1> 

Isospin Combination 

Always 2I + 1 states 
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€ 
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€ 
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● 
Isospin is useful for understanding low energy (≈ 1 GeV) strong interaction scattering cross sections. 
 ■ 
Consider the two reactions (d = deuterium): 
   pp → dπ+ 
   pn → dπ0 

  ◆ 
Deuterium is an “iso-singlet”, |0,0>. 
  ◆ 
In terms of isospin states we have: 
    pp = |1/2,1/2>|1/2,1/2>   dπ+ = |0,0>|1,1> 
    pn = |1/2,1/2>|1/2,-1/2>  dπ0 = |0,0>|1,0> 
  ◆ 
We can use the same techniques as is used to combine angular momentum in QM. 
   ❍ 
For pp, dπ+, and dπ0 there is only one way to combine the spin states:  
     pp = |1/2,1/2>|1/2,1/2> = |1,1> 
     dπ+ = |0,0>|1,1> = |1,1> 
     dπ0 = |0,0>|1,0> = |1,0> 
   ❍ 
The pn state is tricky since it is a combination of |0,0> and |1,0>. 
    ☞ 
The amount of each state is given by the Clebsch-Gordan coefficients (1/√2 in this cases). 

Clebsch-Gordan Coefficients  

€ 

| j1,m1 >| j2,m2 >= Cm,m1,m2
J,J1,J2 | j,m >

j=| j1− j2 |

j1+ j2
∑ with m =m1+m2

€ 

|1/2,+1/2 >|1/2,−1/2 >=
| 0,0 >
2

+
|1,0 >
2
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Clebsch-Gordan Coefficients  
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● 
We now want to calculate the ratio of scattering cross sections for these two reactions. 
● 
Fermi’s Golden Rules tells us that a cross section is proportional to the square of a matrix element:  
  σ ∝ |<f|H|I>|2 
  ◆ 
I = initial state 
  ◆ 
f = final state 
  ◆ 
H = Hamiltonian 
 ■ 
If H conserves isospin (strong interaction) 
  ☞ 
The initial and final states must have the same I and I3. 
  ☞ 
Assuming isospin conservation we have: 
    |<dπ+|H|pp>|2 = |<1,1||1,1>|2 = 1  
    |<dπ0|H|pn>|2 = |<1,0|(1/√2)(|0,0> + |1,0>)|2 = 1/2  
  ☞ 
The ratio of cross section is expected to be: 

   ★ 
This ratio is consistent with experimental measurement! 

Cross Section Calculation using Isospin   

€ 

σ pp→dπ +

σ pn→dπ 0
=

dπ + H pp
2

dπ 0 H pn
2 =

2
1
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● 
Another example of isospin invariance can be found in pion nucleon scattering. 
 ■ 
Consider the following two-body reactions: 

 ■ 
If at a certain energy the scattering particles form a bound state with I = 3/2  
  ☞ 
only the I = 3/2 components will contribute to the cross section: 

  ☞ 

 ■ 
The cross sections depend on the square of the matrix element. 
 ■ 
If we assume that the strong interaction is independent of I3 then we get the following relationships: 

Another Cross Section Calculation Example 

€ 

State              Isospin decomposition

π + p               1,1 1
2 , 1

2 = 3
2 , 3

2

π− p               1,−1 1
2 , 1

2 = 1
3

3
2 ,− 1

2 − 2
3

1
2 ,− 1

2

π 0n               1,0 1
2 ,− 1

2 = 2
3

3
2 ,− 1

2 + 1
3

1
2 ,− 1

2

€ 

1
2 ,I3 H 1

2 ,I3 = 0 or very small

π + p→π + p              = 3
2 , 3

2 H
3
2 , 3

2

π− p→π− p              = 1
3

3
2 ,− 1

2 H
3
2 ,− 1

2 + 2
3

1
2 ,− 1

2 H
1
2 ,− 1

2 = 1
3

3
2 ,− 1

2 H
3
2 ,− 1

2

π− p→π 0n               = 1
3

2
3

3
2 ,− 1

2 H
3
2 ,− 1

2 − 2
3

1
3

1
2 ,− 1

2 H
1
2 ,− 1

2 = 2
3

3
2 ,− 1

2 H
3
2 ,− 1

2

€ 

σπ +p→π +p :σπ−p→π on :σπ−p→π−p = 9 :2 :1

σπ +p

σπ−p
=

σπ +p→π +p

σπ−p→π on +σπ−p→π−p
= 3
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● 
The three predictions are in good agreement with the data! 

Isospin Prediction vs. Data 

€ 

σπ +p

σπ−p
= 3

Beam Energy


mass of πp system


π+p


π-p


π+p


π-p


Data from 1952 paper by 
Fermi’s group. They measured 
the cross section for π-p and π+p 
as a function of beam energy. 

Modern compilation of 
data from many experiments 
giving the cross section for  
π-p and π+p as a function of  
the πp invariant mass. 



K.K. Gan
 L5: Isospin and Parity
 8


● 
An example of a discrete transformation is the operation of inverting all angles:  
   θ → -θ 
 ■ 
A rotation by an amount θ is a continuous transformation. 
 ■  Discrete symmetries give multiplicative quantum numbers (e.g. parity, charge conjugation). 
 ■  Continuous symmetries give additive quantum numbers (e.g. charge, spin). 
● 
Three most important discrete symmetries: 
  Parity (P)      (x,y,z) → (-x,-y,-z) 
  Charge Conjugation (C)  particles → anti-particles 
  Time Reversal (T)    time → -time 
● 
Other not so common discrete symmetries include G parity: 
 ■  G parity is important for pions under the strong interaction. 
● 
Discrete transformations do not have to be unitary transformations ! 
 ■  P and C are unitary transformations 
 ■  T is not a unitary transformation, T is an anti-unitary operator! 
  ◆ 
Operator T is not Hermitian. 

Discrete Symmetries 

M&S p142-3
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● 
Parity and nature:  
 ■  The strong and electromagnetic interactions conserve parity. 
 ■  The weak interaction does not. 
  ☞ 
If we consider a Hamiltonian to be made up of several pieces: 
    H = Hs + HEM + HW 
   ☞ 
The parity operator (P) commutes with Hs and HEM but not with HW. 
   ☞ 
The fact that [P, HW] ≠ 0 constrains the functional form of the Hamiltonian. 
● 
What does parity do to some common operations? 
  vector or polar vector   x → - x or p → -p 
  axial or pseudo vectors   J =  x×p → J 
  time        t → t 
● 
What is the parity of scalar, vector etc.? 
  Name    Form   Parity 
  scalar     r•r   + 
  pseudoscalar   x•(y×z)  -   
  vector    r    - 
  axial vector   r×p   + 
  Tensor    Fuv   indefinite 
● 
Special relativity: the Hamiltonian or Lagrangian of any interaction must transform like a Lorentz scalar. 
  ★ 
If H conserves parity then it should transform as like a scalar. 
   ★ 
If H does not conserve parity then it must contain some pseudoscalar terms. 

Parity 
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● 
Fermi’s original theory of weak interactions (β-decay): 
 ■ 
Hamiltonian was made up of bilinear combination of vector operators (V,V).  
 ■ 
The observation of parity violation showed that this was wrong !  
● 
A more general form of a weak Hamiltonian that does not conserve parity:  
  HW = (S,S) + (S,PS) +  (V,V) + (V,AV)… 

◆ 
Experimental fact: weak interactions where a charged lepton turns into a neutrino (“charged 
current”) can be described by a Hamiltonian of the form: 

    HW = (V,V) + (V,AV) 
    ❍ 
This is parity violating since (V,V) has + parity but (V,AV) has - parity. 
● 
In QED the current is of the form: 

  ◆ 
transforms like a vector. 
● 
In weak interactions the charged current (involves a W boson) is of the form: 

  ◆ 
contains both vector and axial vector terms 
   ☞ 
does not conserve parity! 

Parity 

€ 

Jµ = u γµu

€ 

Jµ = u γµ (1−γ5 )v = u γµv−u γµγ5v γ5 = iγ0γ1γ2γ 3

“V-A” interaction



