Large-Sample Inference and Frequency Properties of Bayesian Inference:

- Home Work 2 – discussion

Normal Approximations to the posterior distribution

- Joint posterior
 - Convenient to approximate a unimodal and roughly symmetric posterior density by a normal distribution, centered at the mode.
 - Log posterior approximated as a quadratic function by a Taylor Series expansion.

\[
\log p(\theta \mid y) \approx \log p(\hat{\theta} \mid y) + \frac{1}{2}(\theta - \hat{\theta})^T \left[\frac{d^2}{d\theta^2} \log p(\theta \mid y) \right]_{\theta = \hat{\theta}} (\theta - \hat{\theta}) + \cdots
\]

- (Mode must be in the interior of the parameter space, and assume that the derivatives exist.
- First order term is zero since the first derivative at the mode is zero.

- Normal distribution with Unknown mean and variance
 - Using non-informative prior on \((\mu, \log \sigma)\), expand its posterior around the mode and approximate it by a joint normal

- Interpretation of the posterior density function relative to the density at the mode

- Summarizing posterior distributions by point estimates and standard errors
 - Transformations to an appropriately defined functions of the parameters can improve the normal approximation

- Data reduction and summary statistics
 - Posterior mode and its curvature at the mode
 - If normal approximation not good, these summaries may be misleading.
• Lower dimensional normal approximations
 o For a finite sample size, the normal approximation is typically more accurate for conditional and marginals than for the full joint dist
 ▪ Marginalizing leads to averaging over all other components of the parameter vector.
 ▪ Bioassay Experiment
 • Approximation in the main body may be OK.
 o May lose some of the tail features (skewness, and tail approximation)

Large-Sample Theory

• Amount of data from some fixed sampling distribution, f(y), increases
• Asymptotic normality of the posterior distribution, even if the true distribution of the data is not within the parametric family under consideration
 o Modeled likelihood p(y|θ) and prior p(θ)
 o If f(y) belongs to this family for some θ₀, then in addition to asymptotic normality, ‘consistency’ also holds.
 o If not, then the θ₀ is replaced by a density in the class, that is closest to the true f(y) in the Kullback Leibler distance.
 o The Fisher information J(θ) is an important component of the asymptotic distribution
• Asymptotic Normality and Consistency
 o Appendix B has the proof under some regularity conditions
 o Continuous function of the parameter and the true θ₀ is not on the boundary of the parameter space, twice differentiable
 o Express the second derivative at the mode in terms of the derivatives of the prior and the log-likelihood
 o As n increases the second term converges to its expectation
 o Likelihood dominates the prior in asymptotic sense
 ▪ So with large amount of data, eliciting prior is not that important
 ▪ For small amount of data, prior is critical
With no data, quality of expert knowledge is highly relevant

Counter Examples to the Theorems

- Under-identified and non-identified parameters
 - Likelihood is same for many different points
 - Recognize the problem exists and get more info or put some constraints on the parameter space
- Number of parameters increasing with sample size
 - Neyman-Scott Problem
- Aliases
 - Mixture models may have two modes
- Unbounded likelihood
 - Mode does not exist
- Improper Prior distributions
 - May lead to improper posterior
- Priors that the point of convergence
- Convergence to the edge of the parameter space
- Approximation not good in the tails

Frequency evaluation of Bayesian Inference

- Large Sample correspondence leads to normal approximation
- Similar interpretation as Frequency theory inference
 - Consistency
 - Efficiency
 - Decision analysis
 - Asymptotic unbiasedness
 - Confidence coverage