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uniformly in t. Also, from Theorem A.2 and its corollary, 

$ w - m(Ol = F hw>, (13) 

both in the stochastic mean [PI] uniformly in t and almost 
surely [P,] for every t, -T 5 t _< T. Now from (ll), 

Thus, with the use of (lo), (12), (13), and mutual 
independence of { $ ) , 

= &(t) $ b(t) - ml(t)1 dt 

+ z akl $ [x(t) - ml(t)1 t=tt 

which proves ii). 

The author 
discussions. 
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Error Bounds for Convolutional Codes 
and an Asymptotically Optimum 

Decoding Algorithm 

ANDREW J. VITERBI, SENIOR MEMBER, IEEE 

Ahstraci-The probability of error in decoding an optimal con- 
volutional code transmitted over a memoryless channel is bounded 
from above and below as a function of the constraint length of the 
code. For all but pathological channels the bounds are asymptotically 
(exponentially) tight for rates above &, the computational cutoff 
rate of sequential decoding. As a function of constraint length the 
performance of optimal convolutional codes is shown to be superior 
to that of block codes of the same length, the relative improvement 
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Increasing with rate. The upper bound is obtained for a specific 
probabilistic nonsequential decoding algorithm which is shown to be 
asymptotically optimum for rates above Ra and whose performance 
bears certain similarities to that of sequential decoding algorithms. 

I. SUMMARY OF RESULTS 

s 

INCE Elias”] first proposed the use of convolutional 
(tree) codes for the discrete memoryless channel, 
it has been conjectured that the performance of 

this class of codes is potentially superior to that of block 
codes of the same length. The first quantitative verification 
of this conjecture was due to Yudkinr2’ who obtained 



VITERBI:ERRORBOUNDSFORCONVOLUTIONALCODES 261 

i- 
K- STAGE SHIFT REGISTER 

I 

v Wq) 
INNER 
PRODUCT 
COMPUTERS 

b 
CHANNEL SYMBOL 

(SIGNAL) sELEcToR 
COMMUTATOR CHANNEL SYMBOLS 

E,,~2,--~~r 
c 

Fig. 1. Encoder for q-ary convolutional (tree) code. 

an upper bound on the error probability of an optimal 
convolutional code as a function of its constraint length, 
which is achieved when the Fano sequential decoding 
algorithmr3’ is employed. 

In this paper, we obtain a lower bound on the error 
probability of an optimal convolutional code independent 
of the decoding algorithm, which for all but pathological 
channels is asymptotically (exponentially) equal to the 
upper bound for rates above R,, the computational cutoff 
rate of sequential decoding. Also, a new probabilistic 
nonsequential decoding algorithm is described, which 
exhibits and exploits a fundamental property of con- 
volutional codes. An upper bound on error probability 
utilizing this decoding algorithm is derived by random 
coding arguments, which coincides with the upper bound 
of Yudkin.[‘l In the limit of very noisy channels, upper 
and lower bounds are shown to coincide asymptotically 
(exponentially) for all rates, and the negative exponent 
of the error probability, also known as the reliability, 
is shown to be 

lim $ In (l/P,) = c/2 0 I R 5 C/2 
.,‘+ m  C-R C/2 5 R < C 

where N is the code constraint length (in channel symbols), 
R is the transmission rate and C is channel capacity. 
This represents a considerable improvement over block 
codes for the same channels. Also, it is shown that in 
general in the neighborhood of capacity, the negative 
exponent is linear in (C - R) rather than quadratic, 
as is the case for block codes. 

Finally, a semisequential modification of the decoding 
algorithm is described which has several of the basic 
properties of sequential decoding methods.[3’ I “I 

II. DESCRIPTION AND PROPERTIES OF THEENCODER 

The message to be transmitted is assumed to be encoded 
into the data sequence a whose components are elements 
of the finite field of q elements, GF(q), where q is a prime 
or a power of a prime. All messages are assumed equally 
likely; hence all sequences a of a fixed number of symbols 
are equally probable. The encoder consists of a K-stage 
shift register, v inner-product computers, and an adder, 
all operating over GF(q), together with a channel symbol 
selector connected as shown in Fig. 1. After each q-ary 
symbol of the sequence is shifted into the shift register, 

the uth computer (U = 1,2, . . . v) forms the inner product 
of the vector in the shift register, which is a subsequence 
of a, with some fixed K-dimensional vector g,, whose 
components are also elements of GF(q). The result is 
a matrix multiplication of the K symbol subsequence 
of a (as a row vector) with a Kxv matrix G (whose uth 
column is g.) to produce v symbols of the sequence b. 
This is added to v symbols of a previously stored 
(or generated) q-ary sequence c, whose total length is 
(L + K - 1)v symbols. The v symbol subsequence of z 
thus generated can be any one of qv v-component vectors. 
By properly selecting the matrix G and subsequence of c 
[or by selecting them at random with uniform probability 
from among the ensemble of all q”” matrices and q’ 
vectors with components in GF(q)], all possible v symbol 
subsequences of z can be made to occur with equal 
probability. Finally the channel symbol selection (or 
signal selection in the case of continuous channels) consists 
of a mapping of each q-ary symbol of z onto an r-ary 
channel symbol xi of the channel input sequence x (where 
r 2 q), as follows: let n, of the q-ary symbols be mapped 
into El, n, into Ez, etc., such that 

$ ni = 4. 

Thus if each symbol of z is with uniform probability 
any element of GF(q), the probability distribution of 
the jth channel input symbol xi is 

p(x, = [J = ; (i = 1, 2, *me r) for all f 

and by proper choice of q and r any rational channel 
input distribution can be attained. Furthermore, since 
one q-ary data symbol thus produces v channel symbols, 
the transmission rate of the system is 

R=lnq nats 
v channel symbol (1) 

and thus, by proper choice of q (which must be a prime 
or the power of a prime) and v, any rate can be closely 
approximated. 

We note also that the encoder thus produces a tree 
code with q branches, each containing v channel symbols, 
emanating from each branching node since for every 
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said to be totally distinct over any sequence of branches 
for which this event does not occur. 

We now proceed to derive the lower bound on error 
probability for an optimal convolutional code using 
property A) and lower bound results for optimal block 
codes. 
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Fig;. 2. Tree code for p = 2, u = 3, T = 2, L = 4, K = 3. 

shift of the register a potentially different set of v channel 
symbols is generated for each of the q possible values 
of the data symbol. An example is shown in Fig. 2 for 
Q = 2, v = 3, r = 2, K = 3. The data symbol ai 
is indicated below each branch while the channel symbols 
xi are indicated above each branch. 

The procedure continues until L data symbols are fed 
into the shift register followed by a sequence of K - 1 
zeros. L is known 8s the (branch) tree length, and N = Ku 
as the (symbol) constraint length of the code. The overall 
encoding algorithm thus produces a tree code with L 
branching levels. All branches contain v channel symbols 
except for the qL final branches which contain N = Ku 
channel symbols. The example of Fig. 2 shows such a 
tree code for L = 4 and K = 3. 

A basic property of the convolutional code thus 
generated by the K-stage shift register is the following. 

A) Two divergent paths of the tree code will converge 
(i.e., produce the same channel symbols) after the 
data symbols corresponding to the two paths have been 
identical for K consecutive branches. Two paths are 

III. THE LOWER BOUND 

Suppose a magic genie informs the decoder as to the 
exact state of each branch data symbol a< for all branches 
i (i = 1, 2, . . * L + K - 1) except for the m  consecutive 
branches j + 1, j + 2, . . . j + m(0 5 j 5 L - m). Thus 
to decode the tree the decoder must decide upon which 
of the qm possible m-symbol q-ary data sequences corre- 
sponding to these m  branches actually occurred, or 
equivalently he must decide among the corresponding 
q’” alternate paths through the tree. To do this he has 
available the (L + K - 1)v symbol received tree sequence 
Y = (Yl, Yz, * ** Y~+~-~) where yi is the received symbol 
sequence for the ith branch. Actually since the ai are 
known for all i 5 j, he needs only examine yi for i 2 j + 1. 
Furthermore, the qm alternate paths in question, which 
diverge at the (j + 1)th branch must converge again 
at the (j + m  + K)th branch, for since all the 
corresponding branch data symbols ai are identical for 
i > j + m  + 1, by the (j + m  + K)th branch the data 
symbols in the shift register will be identical for all 
paths in question. Thus the qm paths are totally distinct 
over at most m  + K - 1 branches. Now letting 

/pm 
K (2) 

and having denoted the constraint length in channel 
symbols by 

N = Ku 

we obtain from (l), (a), and (3) 
(3) 

mln q = pNR. (4) 
The optimal decoder for paths which are a priori equally 
likely must compute the ql” = epNR likelihood functions 
p(y 1 a), where a = (ai+l, .+a ai+,) is an m-component 
q-ary vector which specifies the path, and y = (Y,.+~, . . . 
Yi+n+R-I ) is an (m + K - 1)v = (p + l)N - v com- 
ponent vector, and select the path corresponding to the 
greatest. The resulting error probability is lower bounded 
by the lower bound L51--[71 for the best block code with 
e lrNR words of length (CL + l)N - v channel symbols 
transmitted over a memoryless channel with discrete 
input space: 

PAP, N, R) > exp I-h% + l>FL(R, 1.4 + o(dVlj (5) 

where 

o&N) + 0 linearly ,.JT + 00 

E,(R, p) = 1.u.b. 
os,o_<m 1 

I&(P) - P -&-RI 
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and E,,(p) is the concave hull of the function 

&(P) = ;E l -In T [F P(XMY I 41’1+p11+pI (7) 

where X and Y are the channel input and output spaces, 
respectively, p(y 1 x) is the channel transition probability 
distribution, and p(x) is an arbitrary probability distri- 
bution on the input space. Furthermore, the function Eo(p) 
has the following basic properties which are proved in 
Gallager:“’ 

a) E,(O) = 0 and E,,(p) > 0 for all p > 0, 

b) E;(p) > 0 for all finite p, and lim,,, E;(p) = C 
which is the channel capacity. 

For most channels of interest Eo(p) is itself a concave 
function. When this is not the case the channel is said 
to be pathological.[51 

This bound, known as the sphere-packing bound, is 
the tightest exponential bound for high rates. For low 
rates a tighter bound, which has been recently derived,17’ 
is considered below. E,(R, p) can be obtained by solving 
the parametric equations 

EL@, 14 = J%(P) - P&(P) (84 

R = +1:;(,). @b) 

But p = m/K can be any multiple of l/K up to L/K, 
since m cannot exceed L. Hence, since no particular 
demands can be made on the magic genie, 

PAN, R) 2 max P&, N, RI 
(l/K)J!.LC (L/K) 

> exp I-N (l,K~yg~L,K) (p + ~>[EL@, 1-4 + oW911 (9) 

corresponding to the least obliging genie for the par- 
ticular R. 

Thus we seek the lower envelope 

EL(R) = (l,E~~~~~L,R~ 6.~ + ~)EL@> 1-4. 00) 

It follows from (6) and (7) and property b) that 

lim (p + l)E,(R, p) = 1.u.b. E&J) = &(a) 
p-0 O<P<- 

lim (H + l)E,(R, p) = a for R < C. 
P-f,= 

The family of functions (p + l)E,(R, p) is sketched 
in Fig. 3. To find the lower envelope we must minimize 
E,(R, p) over the set of possible p for each R. For the 
purposes of the lower bound we shall let L/K be as large 
as required for the minimization. First, let us minimize 
over all positive real p and then restrict p to be a multiple 
of l/K. Thus from (8a) we have 

= -e(P) - P&(P) + (P + 1>ha’(P)l~ (11) 

E&‘-O1 

INTERMEDIATE/L 

R 
C 

Fig. 3. Family of functions (p + 1) EL (R, p). 

while from (8b) we have 

(12) 

Combining (11) and (12) and setting the former equal 
to zero, we find that the function has a stationary point at 

PR 
p = l&(P) - P-mP) 

- 1. (13) 

Furthermore, differentiating (11) and using (la), we 
find that 

so that (13) corresponds to an absolute minimum. In- 
serting (13) in (8b) yields 

R = E’o(p) 
P 

(14) 

and since I?,,(p) is concave it follows that R = go(p)/p > 
EL(p) which implies that the solution (13) for p is non- 
negative. From (8a), (13), and (14) we obtain 

min (p + l)E,(R, p) = pR = go(p). 
O<r<m (15) 

Now, since p is restricted to be a multiple of l/K, let 
us consider altering (13) by adding a positive real number 
6 large enough to make p an element of this set. In any 
case 6 < l/K. But changing ,U by this amount in (9) alters 
the exponent by an amount proportional to N/K = v, 
which is a constant parameter of the encoder a.nd hence, 
normalized by N, is o(N). The rate is also altered by an 
amount of the order of l/K by this change in P, but if 
we adjust for this change by returning R to its original 
value (14), we again alter P, by an amount of magnitude 
o(N). Thus from (9), (lo), (14), and (15) we obtain 



264 IEEETRANSACTIONSONINFORMATfON THEORY,APRILl967 

Theorem 1 q)(p) 

The probability of error in decoding an arbitrarily long 
convolutional code tree of constraint length N (channel 
symbols) transmitted over a memoryless channel is 

,/I 

R 
bounded by E(R) 

PE > exp I -NEL(R) + oW)lI 
where 0 P 

(al p< I 
E:,(R) = ho (OSP< a) (164 

and 
P(p) 

R = %P>/P. (16b) 

Taking the derivative of (14) we find 

dR -= -mP) - &(P)IP 
dP 

5 0 for all p > 0 
P 

where we have made use of the fact that go(p) is concave. 
Also, from property b) we have lim,,,, &(p)/p = 
E’(O) = C. Thus we obtain 

E(R) 
R 

J-‘--l 
0 P 

(b) p’l 

Fig. 4. Graphical construction of EL(R) from I%(P). 

CorollarlJ 1 

The exponent E,(R) in the lower bound is a positive 
monotone decreasing continuous function of R for all 
OIR<C. 

A graphical construction of the exponent-rate curve 
from a plot of the function E,,(p) is shown in Fig. 4. We 
defer further consideration of the properties of (16) 
until after an upper bound is obtained. 

A tighter lower bound on error probability for low 
rates is obtained by replacing the sphere packing bound 
of (6) by the tighter lower bound for low rates recently 
obtained by Shannon, Gallager, and Berlekamp.17’ For 
this bound (6) is replaced by 

where 

Ez = ;y I -lim [P 111 F T p(4pb’) 
m 

&P(Y I 4P(Y I ~‘>Yl~ = &(i3. (17b) Y 
The straight line of (17a) is tangent to the curve of (6) 
at R = [(P + 1)/p@;(p). Repeating the minimization with 
respect to CL we find 

E&l = min [(P + l)Ez - &RI 
* 

=E,, -MC. 0 < R < Elbl 

Thus, we have 

Corollary 2 

For low rates a tighter lower bound than that of 
Theorem 1 is: 

PX > & i -NE&) + o(N)lJ 

where 

p’ is the solution to the equation E,,(c) = E,, and E, is 
given by (17b). 

IV. A PROBABILISTIC NONSEQTJENTIAL DECODING 
ALGORITHM 

We now describe a new probabilistic nonsequential 
decoding algorithm which, as we shall show in the 
next section, is asymptotically optimum for rates R > 
R, = E,(l). The algorithm decodes an L-branch tree 
by performing L repetitions of one basic step. We adopt 
the convention of denoting each branch of a given path 
by its data symbol ai, an element of GE(q). Also, although 
GE(q) is isomorphic to the integers modulo (r only when 
Q is a prime, for the sake of compact notation, we shall 
use the integer r to denote the rth element of the field. 

In Step 1 the decoder considers all qK paths for the 
first K branches (where K is the branch constraint length 
of the code) and computes all qK likelihood functions 
n;?I1 p(y, 1 ai). The decoder then compares the likelihood 
function for the q paths: 

(0, az, a, . . * 4, 

0, a2, a3, ... ad, 
. . . . . . . . . . . . . . . . . . 

(a - 1, az, a3, . . . ad 

for each of the qK-l possible vectors (az, a3 . . . ar;). 
It thus performs qIcel comparisons each among q path 
likelihood functions. Let the path corresponding to the 
greatest likelihood function in each comparison be denoted 
the survivor. Only the q”-’ survivors of as many com- 
parisons are preserved for further consideration; the 
remaining paths are discarded. Among the qK-’ survivors 
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each of the qK-’ vectors (a,, a3, . . . aK) is represented 
uniquely, since by the nature of the comparisons no 
two survivors can agree in this entire subsequence. 

Step 5 begins with the computation for each survivor 
of Step 1 of the likelihood functions of the q branches 
emanating from the (K + 1)th branching node and 
multiplication of each of these functions by the likelihood 
function for the previous K branches of the particular 
path. This produces qK functions for as many paths of 
length K + 1 branches, and each of the subsequences 
a2, a3, --e aK+1 are represented uniquely. Again the qK 
functions are compared in groups of q, each comparison 
being among the set of paths: 

@ ii’, 0, aa, a4 - - - aK+d 

cd?, 1, a31 a4 “’ aK+d 

. . . . . . . . . . . . . . . . . . . . . . . . . 

b 
(1) 
al 9 q - 1, a3, a4 ” ’ aK+d 

where a::’ corresponds to the first branch of the survivor 
of a comparison performed at the first step. Again only 
the survivors of the set of g”-l comparisons are preserved 
and the remaining paths are discarded. The algorithm 
proceeds in this way, at each step increasing the population 
by a factor of q by considering the set of q branches 
emanating from each surviving path and then reducing 
again by this factor by performing a new set of com- 
parisons and excluding all but the survivors. 

In particular, at Step j + 1 the decoder performs qK-’ 
sets of comparisons among groups of q paths, which we 
denote 

kf 
(i) (i) 21 , ff22 , * *. Q?i , (i) 1, ai+z, ai+s, *-a aj+K), 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

@f’ , &’ . . . 
a$, q - 1, ai+Z, %+a! ‘-’ ai+K) 

where the vectors (a:;‘, (i) ~r2 , . . . CY$‘) depend on the 
outcome of the previous set of comparisons. Again by 
the nature of the comparisons no two survivors can 
agree in all of the last K - 1 branches and there is a 
one-to-one correspondence between each of the q”-’ 
survivors and the subsequences (ai+z, . . . ai+R). 

This procedure is repeated through the (L - K + 1)th 
step. Beyond this point branching ceases because only 
zeros are fed into the shift register. Thus at step 
L - K + 2 the decoder compares the likelihood functions 
for the q paths: 

(o~if-I’+~), aiimK+l), 9 - . a:f.iJ.f2i+:, 0, aL-K+3 . . * aL, 0)) 

(cY~~-“+~), &fK+l) , . . . a:“,-“,‘::, 1, ar,-R+3 . 1 . aL, 0), 
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

(a$-“’ I), CI$‘~+~), - . - &!2::, q - 1, aL.-K+3 . . . a,, 0) 

for each of the qKm2 possible vectors (a&K+3 . . * a,) 
resulting in qKe2 survivors. Thus, for this and all succeeding 
steps the population fails to grow since all further branches 
correspond only to zeros entering the shift register, and 
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it is reduced by a factor of q by the comparisons. Thus, 
just after the (L - 1)th step there are only q survivors: 

(L-1) (all , . . * a:y;, 000 * . ’ O), 

( 
(L-1) 

%l , ... %,L-1, 
(L-1) 100 . . . O), 

..*.*........................... 

At Step L, therefore, there remains a single comparison 
among q paths, whose survivor will be accepted as the 
correct path. While this decoding algorithm is clearly 
suboptimal, the optimal being a comparison of the 
likelihood functions of all qL paths at the end of the 
tree based on (L + K - 1)v received channels symbols, 
we shall show in the next section that the algorithm 
is asymptotically optimum for R > R. = E,(l) for all 
but pathological channels. 

V. RANDOM CODINGUPPERBOUND 

If we now assume that the matrix G is randomly 
selected with a uniform distribution from the ensemble 
of qaK matrices of elements in Gl”(q) and the sequence 
c is also randomly selected from among all possible 
(L + K - l)v-dimensional vectors with components in 
the same field, the channel symbols along a given path 
regarded as random variables have the following prop- 
erties18’ in addition to A): 

B) The probability distribution of the jth channel 
symbol for any path is the same for all j, and for all paths 

P(Xi = r;J = Pi (i = 1,2, *.. r). 

C) Successive channel symbols along a given path 
are statistically independent 

p(xl = ‘&I, xZ = Ed,, * ” X(L+K--1)~ = ‘$(L+&).) 

(L+K-Ijo 

We shall need one more property before we can proceed, 
which requires a modification of the encoder: 

D) Symbols along arbitrary subsequences of any two 
totally distinct paths are independent. 

Reiffen”’ proved property D) for the present encoder 
but only within the first K-branch constraint length. 
To ensure that D) is satisfied over the entire L-branch 
tree, we must modify the encoder. One obvious way is 
to randomly select a new Kxv generator matrix G after 
each new data symbol ai is shifted into the register. 
However, Massey “I has recently shown that it is possible 
to ensure D) by introducing only 2v new components 
into the first two rows of the generator matrix for each 
new data symbol, and simply shifting all the rows of 
the previous generator matrix two places downward and 
discarding the last two rows. 

We now proceed to obtain an upper bound on the 
error probability for the class of convolutional codes 
which possess the above properties, by analyzing the 
performance of t.he decoding algorithm of the previous 
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section, We recall that the correct path is eliminated if 
it fails to have the largest likelihood function in any one 
of the L comparisons among q alternatives in which it 
is involved. 

In particular, let us consider the situation at the 
(j + 1)th step. Without loss of generality, we may assume 
that the correct path corresponds to the all zeros data 
sequence. Although the comparison at this step is with 
only q - 1 other paths, there is a multitude of potential 
adversaries. Thus, with the first j + K branches of the 
correct path denoted by the vector 0 = (00 . . . 0), con- 
sider all the paths of the form ail’, (j) %2 , * * * @lOO * . * 0. 
There is only one such path which diverged from the 
correct path K branches back: namely, the one for which 
CYp *** a!zj (f) = 00 . . . 0. But there are q - 1 potential 
adversaries of this form which diverged from the correct 
path K + 1 branches back: namely, those for which 
a;:” (i) . . . %?i-1 = Of-J . . . 0 and oc:i’ is any element of 
GF(q) except 0. Similarly, there are (q - 1)q potential 
adversaries of this form which diverged from the correct 
path K + 2 branches back: namely, those for which 
CYif’ . . . (y ;f;+ = 00 * - * 0, ai1i.-1 is any element except 0, 
and a$’ is any element of GF(q). Continuing in this way, 
we find that there are (q - l)q”-’ potential adversaries of 
this form which diverged K + 1 branches back. However, 
there are exactly as many potential adversaries for which 
ai+l = 2, as these are adversaries for which aj+l = 1, and 
similarly for U~+~ = 3, 4, . . . q - 1. Thus, the total 
number of potential adversaries which diverged from the 
correct path K + 1 branches back (1 = 1, 2, . e .) is 
(q - l)“q”-‘, while q - 1 paths diverged K branches back. 

Before we can proceed to bound the error probability, 
we must establish that of all the potential adversaries 
which diverged from the correct path K + 1 branches 
back only those that are totally distinct from it can 
actually be adversaries in the comparison of likelihood 
functions. We recall from property A) that two paths 
which diverge at a given branch will converge again 
after K branches if all of the next K data symbols are 
identical. Furthermore, any pair of paths having data 
symbols which are never identical for K consecutive 
branches remain totally distinct from the initial diver- 
gent branch. We now observe that by the nature of the 
decoding algorithm no two adversaries in any comparison 
can agree in K (or more) consecutive branch data symbols 
beyond their point of initial divergence, for at the out- 
come of each preceding set of comparisons there was one 
and only one surviving path with a particular sequence of 
K data symbols. 

Thus, all the actual adversaries to the correct path at 
step j + 1 are totally distinct from it and consequently 
the branch channel symbols are statistically independent 
[Property D]. Further, we have no more than q - 1 
possible adversaries to the correct path which diverged 
K branches (or N channel symbols) back and no more 
than (q - l)‘q’-’ possible adversaries to the correct 
path which diverged K + 1 branches (or (K + Z)v = 
N + (In q/R)Z channel symbols) back, where 1 = 1; 2, . . . . 

IEEE TRANSACTIONS ON INFORMATION THEORY, APRIL 1967 

Thus, the expected probability of an error in the com- 
parison at the (j + 1)th step is bounded by the union 
bound, 

w + 1) < 2 p r ( error caused by a possible adversary 
1=0 

which diverged K + I branches back). (19) 

The zeroth term of this sum is bounded by the probability 
of error for a block code of (q - 1) words (the maximum 
number of possible adversaries) each of length N channel 
symbols, while the Zth term (I 2 1) is bounded by the 
error probability for a block code of (q - l)‘q’-’ words 
each of length N + (In q/R)1 channel symbols. Since 
all symbols of each codeword are mutually independent 
and symbols of the correct codeword are independent of 
symbols of any other codeword, we may use the random 
coding upper bound on block codesL51 51 for the lth term. 
Thus, if for the given transmission rate the convolutional 
encoder is mechanized, as described above, so that the 
input symbol distribution is that which achieves the 
maximum of (7), we have, 

P(i + 1) < (n - 1)” exp [-~~ddl + $ [(a - 1)2~1--llp 

.exp [-(N + $f l)&(P)] 

’ - ’ exp [--A%(p)] (0 < p 5 1) (20) = 1 _ q-dR 

where E = Eo(p) - pR > 0. This bound is independent 
of j. We again use a union bound to express the error 
probability in decoding the L branch tree in terms of 
(20) and thus obtain 

L-1 - 
PE < c P(i + 1) i=o 

(21) 
< uq - 1) 

1 - p-"R exp [-N-%(P)I (0 < P I 1) 

where e = Eo(p) - pR > 0 and since at least one code - 
in the ensemble must have P, < P,, and E,,(p) is a 
monotonically increasing function of p, we have 

Theorem %’ 

The probability of error in decoding an L-branch q-ary 
tree code transmitted over a memoryless channel is 
bounded by 

P E < L(q - l) exp [-NE(R)] 1 - ge/R 

1 Note that Gallager’s proof of the upper bound for block codes[sl 
requires only that the correct word symbols be independent of the 
symbols of any incorrect word, and not that incorrect words be 
mutually independent. 
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where’ 

OiR=R,-c<R, (224 

1 
Eo(P), 

I 

R. - c 5 R = E”(P) - 5 < c 
P 

CW 
(0 < P i 1) 

and 

R. = E,(l) = max {-In c [CP(~~P(Y I x)121. P(Z) Y x 
Since the bound was shown for the specific probabilistic 
decoding algorithm described above, and e > 0 can be 
made arbitrarily small for N arbitrarily large, we have 
comparing (16) and (22), whenever Eo(p) is concave, 

lim ln (1/pd 
N = E(R) = E,(R) for R, 5 R < C (23) 

N-+m 

and consequently 

Corollary I 
For all but pathological channels the specific prob- 

abilistic decoding algorithm described in Section IV is 
asymptotically (exponentially) optimum for R > R,. 

Yudkin[” has obtained an upper bound with the 
exponent of (22) for the undetectable error probability 
of the Fano sequential decoding algorithm.‘31 Thus the 
Fano algorithm is also asymptotically optimum in this 
sense for R >_ R,. However, the average number of 
computations per branch is unbounded for R > R, in 
the latter, while for the nonsequential algorithm con- 
sidered here the number of computations per branch is 
proportional to qK independent of rate. Also, as we shall 
show below, the number of computations required with 
this algorithm for a convolutional code of constraint 
length N is essentially the same as the number required 
by a maximum likelihood decoder for a block code of 
block length N, all the other parameters being the same. 

The random coding upper bound exponent (with E = 0) 
is greater than the random coding exponent for block 
codes for all rates (0 < R < C), as is seen by comparing 
(22) with the exponent for block codesi51 of length N: 

E(R) = Ro -R, 
i 

0 < R 5 E;(l) (244 

WP) 

I 

- PEZP), E;(l) 5 R = E6(p) < C 

(0 < p 5 1). (24b) 

From property b) of E,,(p), we have E,!,(p) > 0. Also, 
from (24b) we have E,,(p)/p 2 E;(p), and the conclusion 
follows. 

The same is true also for the lower bound. For 
R > E;(i), the best known lower bound for block 
codes[51-L7’ coincides with the sphere packing bound, 
which is the same as (24b) for nonpathological channels 

2 If EC,“(P) > 0 for some p on the unit interval, (22b) may specify 
more than one value of E(R) for a given R. In this case we should 
choose the greater, with the result that E(R) is a discontinuous 
function. 

but with p extended to fi 2 1. Thus for this range the 
lower bound on convolutional codes (16) exceeds this 
for the reasons just stated. For R < EL(c), the best 
known bound for block codesL71 is E,(R) = E, - ,6R 
(p 2 l), while from (18) for convolutional codes we have 
E,(R) = E, for 0 < R < E,,(c)/; > E;(6) which therefore 
exceeds the lower bound for block codes in this region 
also. For pathological channels the same argument applies 
to &(p). 

VI. LIMITING CASES AND COMPARISONS WITH 
BLOCK CODES 

Of particular interest is the behavior of the exponent 
in the neighborhood of capacity. We have from the 
properties a), b), and equation (7) 

2&(O) = 0, &(O) = c, E;‘(o) I 0. 

We must solve the parametric equations 

E,(R) = -@cd,) (254 

R _ @dd 
(0 i P I 1) (25b) 

P 

for R in the neighborhood of C, which corresponds to p 
in the neighborhood of 0. Thus, excluding for this purpose 
the case in which E;‘(O) = 0, and expanding l&(p) in a 
Taylor series about p = 0 neglecting terms higher than 
quadratic, we obtain 

&l(P) c pC + $ E;‘(O) c=z E,,(p). 

Then from (25b) and (26) we have 

p = W7 4). 
-E;‘(O) 

Substituting in (26) and neglecting terms higher than 
linear in C - R we obtain (setting E % 0 in the upper 
bound) 

E(R) w E,(R) = -&SP) ms(C - RI. 

In contrast, for block codes the exponent for rates in the 
neighborhood of C(p = 0), as obtained by repeating the 
above argument in connection with (24b), is 

E(R) = E,(R) z +i@) (C - R12. 

Another interesting limiting case is that of “very 
noisy” channels which includes the time-discrete white 
Gaussian channel. A memoryless channel is said to be 
very noisy if p(y 1 x) = p(y)0 + e,,) where IcZyI << 1 
for all x and g in the channel input and output spaces X 
and Y. For this class of channels it has been shown[‘l 
that when the input distribution is optimized so that 
1(X; Y) = C, then 

&(P) = El(P) = j+y (27) 
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Also 

R, = E,(l) x 2” r-z E, 

and from (17b), it follows that ,i? = 1. Thus, with B = 0 
we find from (18), (22), and (27) 

E(R) cz E,(R) cz C/2, 0 5 R < C/2. (284 

For rates above C/2 we have from (16), (22), and (27) 

R=Ed!&C. 
P 1fP 

Solving for p in terms of R, and substituting in (27), 
we obtain from (16) and (22): 

E(R) cz E,(R) % C - R, $R<C. (28b) 

From (28a) and (28b) we note that for very noisy channels 
the upper and lower bounds are exponentially equal 
for all rates, that they remain at the zero rate level of 
C/2 up to R = C/2 and then decrease linearly for rates 
up to C. This is to be compared with the corresponding 
result for block codes:151 

E’(R) = E,(R) 

0 I R 5 C/4 
NN 

C/4 _< R < 6. 

(29) 

The two exponents for very noisy channels (28) and (29) 
are plotted in Fig. 5. The relative improvement increases 
with rate. For R = R. = C/2, the exponent for con- 
volutional codes is almost six times that for block codes. 

While the upper and lower bound exponents are identical 
in the limiting case, we see from the example of the error- 
bound exponents for three binary symmetric channels 
(with p = 0.01, p = 0.1, and p = 0.4), shown normalized 
by C in Fig. 6, that as the channel becomes less noisy 
the upper and lower bounds diverge for R < R,. In 
fact, if for all p, E;‘(p) = 0, then Eo(p) = PC, so that 
R, = 6. Thus, the upper bound exponent equals R. 
for all R < C. 

There remains to show that this significant improvement 
over the performance of block codes is achievable without 
additional decoding complexity. But we observe that 
in decoding L branches or L In q nats the decoding 
algorithm considered makes slightly less than LqK branch 
likelihood function computations or LvqK = (L/K)NqK 
symbol likelihood function computations. Now the equiv- 
alent block code transmits L In q nats in blocks of K In q 
nats at a rate R = In q/v = K In q/N nats/symbol, 
which corresponds to transmitting one of qK words of 
length N symbols. Thus, the decoder must perform NqK 

BLOCK CODES 

R/C 

Fig. 5. E(R) for very noisy channels with convolutional 
andblock codes. 
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Fig. 6. E(R) and E,(R) for the binary symmetric channels with 
evolutional codes (p = 0.01, p = 0.1, p = 0.4). 

repeat this L/K times. Consequently, the number of 
computations is essentially the same for the convolutional 
code decoding algorithm described as is required for 
maximum likelihood decoding of the equivalent block 
code. 

We should note, however, that since K - 1 zeros 
are inserted between trees of L branches, the actual 
rate for convolution codes is reduced by a factor of 
L/(L + K - 1) from that of block codes, a minor loss 
since, because of the greatly increased exponent, we can 
afford to increase L (which affects P, only linearly) 
enough to make this factor insignificant. 

VII. A SEMI-SEQUENTIAL MODIFICATION OF THE 
DECODING ALGORITHM 

We observe from (22) with the substitution N = Ku = 
K In q/R, that 

p 
E 

Ro/R for 0 5 R = R, - c < R, (30) 

for the specific decoding algorithm considered. However, 
as we have just noted, the number of likelihood function 

symbol likelihood function computations per block and computations per decoded branch is slightly less that qK, 



VITERBI:ERRORBOUNDSFORCONVOLUTIONALCODES 269 

which means that the error probability decreases more 
than linearly with computational complexity for rates 
in this region. 

Now let us consider an iterated version of the previous 
algorithm. At first we shall employ the aid of a magic 
genie. It is clear that the nonsequential decoding algorithm 
can be modified to make decisions based on k branches 
where k < K, the constraint length, and that the resulting 
error probability is the same as (30) with K replaced 
by k. Thus suppose the decoder attempts to decode the 
L-branch tree using k = 1 and at the end of the tree 
the genie either tells him he is correct or requires him 
to start over with k = 2 and that he proceeds in this 
way each time increasing k by 1 until he is either told 
he is correct or he reaches the constraint length K. Then, 
since at each iteration the number of computations is 
increased by a factor q, the number of computations per 
branch performed by the end of the lcth iteration is 
q + q2 + *** + qk = [q(qk - l)/(q - l)] < 2qk. Thus, 
denoting the total number of computations per branch 
by y, we have using (30), 

of the decoded path with a threshold. If it exceeds this 
threshold the total path is accepted as correct; otherwise 
the algorithm is repeated with k increased by 1. Since 
the last N symbols occur after the tree has stopped 
branching, these can be affected by the last K branches 
only since no more than K data symbols are in the coder 
shift register when these channel symbols are being 
generated. Thus, there are only qK possible combinations 
of channel symbols for the final branches which are of 
length N channel symbols. The upper bound on the 
probability of error for a threshold decision involving qK 
code words of block length N selected independently isL1ll 

P, < 2 exp [-NE,(R)] 

where 

E,(R) = max (max 
P(Z) O<P<l 

and 

OiR<C 

Prob (7 > 29”) < uq - 1) 
l _ q-e,R (q”)-““‘“f 

or 

Prob (7 > P) < 
L(q - 1) r -Rn’R 

0 1 - q-‘/R 2 ’ 

O<R=R,-,<Ro (31) 

which is known as a Pareto distribution. Also, we have 
for the expected number of computations per branch 

7 < 2 qkP,(k - 1) < 
k=l 

= uq - l)q (1 - q-~‘R)2 ’ O<R=R,--e<Ro. (32) 

Thus, the expected number of computations per branch 
increases no more rapidly than the tree length for R < R,, 
a feature of sequential decoding. Actually the Fano 
algorithm has been shown”” to have a Pareto distribution 
on t,he number of computations with a higher exponent 
than Ro/R for R < R, and an expected number of com- 
putations which is independent of the tree or constraint 
length. However, with the Wozencraft algorithm[41 T 
increases linearly with constraint length. The major 
drawback of this scheme, besides the genie which we 
shall dispose of presently, is that the number of storage 
registers required at the kth iteration is qk and con- 
sequently the required storage capacity also has a Pareto 
distribution. 

To avoid employing the genie, the decoder must have 
some other way to decide whether or not the kth iteration 
produces the correct path. One way to achieve this is to 
compare the likelihood function for the last N symbols 

R=K1nqIb 
N as before. 

V 

By choosing N or K large enough, P, can be made 
sufficiently small, although clearly it can not be as small 
as PE of (22), which results from use of the nonsequential 
algorithm. 

Although this algorithm is rendered impractical by the 
excessive storage requirements, it contributes to a general 
understanding of convolutional codes and sequential 
decoding through its simplicity of mechanization and 
analysis. 
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