Arsenic in Public Water Systems – A Bayesian Approach

Crystal Dong
Background

- STAR Grant Project
- Source to Biomarker (STB)
- First stage: Source to Aerial
- The goal:
 - a map of metal concentration
 - at the scale of county (or census track).
 - soil, water, air, and food
 - feed into later stages
Science

- What is Arsenic?
- Natural?
- Harmful?
- EPA rule: 50 µg/L to 10 µg/L, 2006
- Ohio EPA insight: connection with iron
Getting Data

- PWS – public water system
- Why only Ohio
- Why only Franklin county
- Why is the map so scarce
Choose variables

- # connection highly correlated with population
- Source (GW, SW, PSW, PGW)
- Iron level
- Others?
Getting values for non-detects

- Quantile Method
 - Assume normal
 - Fit straight line

```r
MDL<-function(n1, n2, y2){
i<-seq(1,n1+n2)
z<-qnorm((i-.5)/(n1+n2))
line.fit<-lm(y2~z[(n1+1):(n1+n2)])
mu.hat<-line.fit$coeff[1]
sigma.hat<-line.fit$coeff[2]
y1<-mu.hat+sigma.hat*z[1:n1]
y1
}
```
Input Data

- Greater Franklin County
- 12 out of 48 missing
- 43015 outlier
- Population
- Source
- Iron level
Model Specification

- \(\text{As} | \mu, s^2, S \sim \text{MVN}(\mu, s^2 S) \) \hspace{1cm} (1)
- \(\text{E}(\mu[i] | a_0, a_1, a_2, a_3) = a_0 + a_1 \text{population}[i] + a_2 \text{Fe}[i] + a_3 \text{source}[i] \) \hspace{1cm} (2)
- \(a_0 \sim N(0.0,1.0E-6) \) \hspace{1cm} (3)
- \(a_1 \sim N(0.0,1.0E-6) \)
- \(a_2 \sim N(0.0,1.0E-6) \)
- \(a_3 \sim N(0.0,1.0E-6) \)
- \(t \sim \text{Gamma}(0.001, 0.001) \)
- \(s^2 = 1/ t \)
- \(f \sim U(0.001, 0.8) \)
- \(? \sim U(0.05,1.95) \)
Spatial Part

- Between-area correlation matrix:
- \(S_{ij} | ? = f(d_{ij}; ?) \)
 - where \(d_{ij} = \) distance between area \(i \) and \(j \).

- powered exponential family
 - \(f(d_{ij}; f, ?) = \exp[-(f d_{ij})^?] \) where \(f > 0 \) and \(? \in (0, 2] \).
 - The larger \(f \) is, the more rapid the rate of decline of correlation with distance. The parameter \(? \) controls the amount by which spatial variations in the data are smoothed. Large values of \(? \) lead to greater smoothing.
WinBUGS
MCMC results

<table>
<thead>
<tr>
<th>node</th>
<th>mean</th>
<th>sd</th>
<th>MC error</th>
<th>2.50%</th>
<th>median</th>
<th>97.50%</th>
<th>start</th>
<th>sample</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_0</td>
<td>-2.297</td>
<td>0.2197</td>
<td>0.00288</td>
<td>-2.725</td>
<td>-2.298</td>
<td>-1.841</td>
<td>501</td>
<td>7500</td>
</tr>
<tr>
<td>a_1</td>
<td>-8.2E-07</td>
<td>6.2E-06</td>
<td>9.9E-08</td>
<td>-1.3E-05</td>
<td>-7.3E-07</td>
<td>1.1E-05</td>
<td>501</td>
<td>7500</td>
</tr>
<tr>
<td>a_2</td>
<td>0.8463</td>
<td>0.0173</td>
<td>2.73E-04</td>
<td>0.8125</td>
<td>0.846</td>
<td>0.881</td>
<td>501</td>
<td>7500</td>
</tr>
<tr>
<td>a_3</td>
<td>0.005848</td>
<td>0.03921</td>
<td>7.15E-04</td>
<td>-0.06941</td>
<td>0.004609</td>
<td>0.08326</td>
<td>501</td>
<td>7500</td>
</tr>
<tr>
<td>$?_0$</td>
<td>0.3791</td>
<td>0.1829</td>
<td>0.005395</td>
<td>0.0789</td>
<td>0.365</td>
<td>0.7787</td>
<td>501</td>
<td>7500</td>
</tr>
<tr>
<td>f</td>
<td>0.4281</td>
<td>0.2113</td>
<td>0.008089</td>
<td>0.06349</td>
<td>0.4227</td>
<td>0.7825</td>
<td>501</td>
<td>7500</td>
</tr>
<tr>
<td>s^2</td>
<td>0.05601</td>
<td>0.08785</td>
<td>0.003591</td>
<td>0.01043</td>
<td>0.03269</td>
<td>0.2527</td>
<td>501</td>
<td>7500</td>
</tr>
</tbody>
</table>
Future work

- C program
- Link between raw water and treated water
- Log-transformed normal assumption
- Iron dominates
 - Population?
 - Source?
 - Others?
- Re-examine data pre-processing