- So far we discussed only a single RV
- In real (useful) experiments, we usually collect information on two or more quantities simultaneously
- Pressure, Volume, Temperature
- Service Times, \# of A/C units
- \# of cars and \# of trucks on a Hwy
- fuel consumption and average speed traveled
- height and weight
- time until failure of two different components
- We need to be familiar with probabilistic modeling of two or more RV's
- Prediction of one variable given the values of the other(s)

Joint Distribution for Discrete RV's

Def: The joint pmf of X and Y is a function $p(x, y)$ or $p_{X Y}(x, y)$ satisfying:

$$
p(x, y)=P(X=x, Y=y)
$$

Genuine joint pmf:

Let A be a set of (x, y) pairs. Find the $P(A)$:
e.g. $A=\{(x, y): x+y=5\}$ or $A=\{(x, y): x \geq 3, y \leq 4\}$

Example 5.1

$\mathrm{X}=$ auto policy deductible
$\mathrm{Y}=$ homeowner's policy deductible
...for a randomly selected person in an insurance pool
Joint Probability Table

$p(x, y)$			0	y
x	100	0.20	0.10	0.20
	250	0.05	0.15	0.30

Marginal Distributions

The marginal pmf's of X and Y, denoted by $p_{X}(x)$ and $p_{Y}(y)$ are

\[

\]

Example -Transportation

- The joint probability distribution (pmf) of the number of cars, X , and the number of buses, Y , per signal cycle at a proposed left turn lane (as a two way table)

	\# buses				
\# cars	$\mathrm{p}(\mathrm{x}, \mathrm{y})$	0	1	2	Col. Sum
	0	.025	.015	.01	.05
	1	.050	.030	.02	.10
x	2	.125	.075	.05	.25
	3	.150	.090	.06	.30
	4	.100	.060	.04	.20
	5	.050	.030	.02	.10
	Row Sum	.5	.3	.2	1.00

Transportation Example - Continued
a. Probabilities of some events of interest:
P (exactly one car and one bus during a signal cycle $)=p(1,1)=$
P (at most two cars and at most one bus) $=P(X \leq 2, Y \leq 1)=F(2,1)=$
$P($ fewer than two cars and at most one bus $)=P(X<2, Y \leq 1)=F(1,1)=$
$P($ one car $)=p_{X}(1)=$
$P($ no bus $)=p_{Y}(0)=$

Event of interest- Functions of two variables
Suppose that the left turn lane is designed for a capacity of five cars.
Assume that one bus takes the space equivalent to that of three cars. Find
the probability of an overflow during a signal cycle.

Transportation Example - Continued
b. Marginal distributions

Marginal pmf of X

Marginal pmf of y :
c. Independence: Are X and Y independent random variables?

Note: Given only the marginal distributions, we can't find the joint distribution, unless we are told that X and Y are independent random variables.
d. WARNING: Small perturbations in joint probability, while keeping the same marginal distributions, can lead to the two variables being not independent.

Two Continuous RV's

Let X and Y be continuous RV's. A joint pdf $f(x, y)$ for these two random variables is a function satisfying:

$$
f(x, y) \geq 0 \quad \text { and } \quad \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) d x d y=1
$$

Let A be a region in two-dimensions:

Eg: $A=$ rectangle $=\{(x, y): a \leq x \leq b, c \leq y \leq d\}$

CAUTION: This is NOT the area of the rectangle....

So, what is it?

Geometry

Marginal Distributions

$$
\begin{aligned}
f_{X}(x) & =\int_{-\infty}^{\infty} f(x, y) d y \\
f_{Y}(y) & =\int_{-\infty}^{\infty} f(x, y) d x
\end{aligned}
$$

Example 5.3

Let X and Y have the joint density:

$$
f_{X Y}(x, y)=\left\{\begin{array}{cc}
k(x+y)^{2} & 0 \leq x \leq 1, \quad 0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.
$$

a) Find k
b) Find $P(X>Y)$ by first identifying the region of integration and then performing the integral

c) Find $\quad P(|X-Y| \leq 0.5) \quad$ by first identifying the region of integration

\square
d) Find the marginal distribution of X : $f_{X}(x)$
e) Marginal distribution of Y :

Jointly Distributed Random Variables Section 5.1 cont.

Two Discrete RV's
Two Continuous RV's
pmf
pdf
$p(x, y)=P(X=x, Y=y)$

$$
f(x, y)
$$

computing probabilities

$$
P((X, Y) \in A)=\sum_{(x, y) \in A} p(x, y) \quad P((X, Y) \in A)=\int_{A} \int_{A} f(x, y) d x d y
$$

marginal distributions

$$
\begin{array}{ll}
p_{X}(x)=\sum_{y} p(x, y) & f_{X}(x)=\int_{-\infty}^{\infty} f(x, y) d y \\
p_{Y}(y)=\sum_{x} p(x, y) & f_{Y}(y)=\int_{-\infty}^{\infty} f(x, y) d x
\end{array}
$$

Independence of Two Random Variables

Recall: Two events E_{1} and E_{2} are said to be independent if

$$
P\left(E_{1} \cap E_{2}\right)=P\left(E_{1}\right) \cdot P\left(E_{2}\right)
$$

Otherwise, they are dependent.
Interpretation: Knowing whether E_{1} has occurred does not tell us anything about whether E_{2} has occurred, i.e., $P\left(E_{1} \mid E_{2}\right)=P\left(E_{1}\right)$

Two discrete RV's are said to be independent if

$$
p(x, y)=p_{X}(x) \cdot p_{Y}(y)
$$

Example

$\mathrm{X}=$ auto policy deductible
$\mathrm{Y}=$ homeowner's policy deductible
Joint Probability Table

$p(x, y)$			y		
x	100	0.20	0.10	0.20	
	250	0.05	0.15	0.30	

x	100	250
$\mathrm{p}(\mathrm{x})$	0.5	0.5

y	0	100	250
$\mathrm{p}(\mathrm{y})$	0.25	0.25	0.5

Two Continuous Random Variables

Two continuous RV's are said to be independent if

$$
f(x, y)=f_{X}(x) \cdot f_{Y}(y)
$$

Consequence of Independence:

Example

$$
\begin{array}{ll}
f(x, y)=4 x y & 0 \leq x \leq 1 \\
0 \leq y \leq 1
\end{array}
$$

Example

$$
\begin{array}{ll}
f(x, y)=4 x y & 0 \leq x \leq 1 \\
0 \leq y \leq 1
\end{array}
$$

Marginal Distributions:

Another Example

A health-food store stocks two different brands of a certain type of grain. Let $X=$ the amount (in pounds) of brand A on hand and $Y=$ the amount (in pounds) of brand B on hand. Suppose the joint pdf of X and Y is
$f_{X Y}(x, y)=\{$
$k x y$
0
$x \geq 0, y \geq 0,20 \leq x+y \leq 30$
otherwise

a) First draw the region of positive density of and find the normalizing constant k.
b) Are X and Y independent?

Answer by first deriving the marginal pdf of each variable. Hints: The two marginal distributions are the same due to the symmetry of the problem (so you only need to compute one of the marginal distributions). Be careful: the marginal distributions are piecewise functions (there are two separate pieces you need to consider).

Note on Independence

Independent:

Not Independent:

> Expected Values, Covariance, and $\frac{\text { Correlation }}{\text { As seen earlier }}$ Discrete $E[h(X)]=\sum_{x} h(x) p(x) \quad$ Continuous $E[h(X)]=\int h(x) f(x) d x$

Let $h(x, y)$ be a function of two variables (x, y).
When X and Y are discrete and jointly distributed with $p m f p(x, y)$, then:

$$
E[h(X, Y)]=
$$

If X and Y are continuous and jointly distributed with pdf $f(x, y)$, then:

$$
E[h(X, Y)]=
$$

Example

5.14 (modified) Suppose (example 5.5) the marginal distribution of amount of almonds (X) and the marginal distribution of the amount of cashews (Y) in a $1-\mathrm{lb}$ can of nuts are:

$$
f_{X}(x)=\left\{\begin{array}{cl}
12 x(1-x)^{2} & \begin{array}{l}
0 \leq x \leq 1 \\
0
\end{array} \\
\text { otherwise }
\end{array} \quad f_{Y}(y)=\left\{\begin{array}{cl}
12 y(1-y)^{2} & 0 \leq y \leq 1 \\
0 & \text { otherwise }
\end{array}\right.\right.
$$

If 1 lb of almonds cost the company $\$ 1.00$, 1 lb if cashews costs $\$ 1.50$, and 1 lb of peanuts costs $\$ 0.50$, then what is the expected total cost of a can?

Covariance

Covariance is a measure of how strongly two random variables are (linearly) related and whether this TREND is positive or negative

μ_{V}

 μ_{V}

Covariance

$$
\operatorname{Cov}(X, Y)=E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E[X Y]-\mu_{X} \mu_{Y}
$$

Discrete Case:

Continuous
Case:

Problem with interpreting covariance as a measure of the strength of relationship between X and Y :

$$
\operatorname{Cov}(a X+b, c Y+d)=
$$

$$
\rho=\rho_{X, Y}=\frac{\text { Correlation }}{\underline{\operatorname{Cov}(X, Y)}} \begin{array}{|}
\sigma_{X} \cdot \sigma_{Y}
\end{array}
$$

Correlation is a measure of how strongly two random variables are linearly related

- $-1 \leq \operatorname{Corr}(\mathrm{X}, \mathrm{Y}) \leq 1$
- If $a c>0, \operatorname{Corr}(a X+b, c Y+d)=\operatorname{Corr}(X, Y)$
- If X and Y are independent, then $\rho=0$, BUT $\rho=0$ does not imply independence.
- $\rho=1$ or $\rho=-1$ if and only if $Y=a X+b$ for some $a \neq 0$

Transportation Example - Continued

e. Expected Values and Variances of X, Y
\# of Cars in one signal cycle, $E(X), \operatorname{Var}(X)$
\# of Buses in one signal cycle, $\mathrm{E}(\mathrm{Y}), \operatorname{Var}(\mathrm{Y})$
f. $\operatorname{Cov}(X . Y)$ and $\operatorname{Cor}(X, Y)$

Find $E(X Y)$:
$\operatorname{Cov}(X, Y)=$
$\operatorname{Cor}(X, Y)=$

