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1. A brief introduction

The main focus of this minicourse is to present results about Coxeter groups and
Artin groups attained through the lens of CAT(0) geometry. This is not solely a
course on these groups, nor is it comprehensive. Much of the focus will be on the
theory behind CAT(0) spaces and complexes of groups, two tools which have been
invaluable in the study of these classes of groups. Not only will these prove to be
useful in the study of Coxeter groups and Artin groups, but the groups themselves
provide interesting and non-trivial examples of CAT(0) spaces and complexes of
groups. We’re going to jump around these topics rather than group them all together
in order to try to illustrate these connections.

Let’s start with the definition of Coxeter groups and Artin groups, since these
are certainly the easiest things we’ll define for a while. There are many equivalent
definitions of a Coxeter group. The simplest is to start with a finite set I, then form
symbols S = {si}i∈I , which give rise to a group with the presentation

W = ⟨ ri | (rirj)mij = 1 ⟩,

where 1 ≤ mij ≤ ∞, mij = mji, and 1 = mij if and only if i = j. If mij = ∞
then we exclude the corresponding relation. We will call the pair (W,S) a Coxeter
system. (The choice of generators is important!)

Typically the mij are arranged in either a Coxeter matrix or Coxeter diagram.
A Coxeter matrix M is just a symmetric integral matrix (mij)i,j∈I with 1s along
the diagonal, and where each off-diagonal entry is between 2 and ∞ (inclusive).
A Coxeter diagram Γ is a simplicial graph (no loops or double edges) with vertex
set I whose edges {i, j} are labeled with an integer 3 ≤ mij ≤ ∞. If mij = 3 we
often omit the label. Two vertices not joined by an edge represent mij = 2, and we
always take mii = 1.

Given a Coxeter matrix M or diagram Γ, we often denote the corresponding
Coxeter group by WM or WΓ, in which case the distinguished generators S are to
be taken implicitly. These various expressions of Coxeter groups have their own
utility, but typically the diagrams will be most useful for visualizing the structure
of the so-called “special subgroups”, which become important later.

The prototypical example of a Coxeter group is the symmetric group on n letters,
Sn. The Coxeter generators are given by the transpositions (i, i+1). For an infinite
example, see the group of reflection symmetries of the equilateral triangle tiling of
R2 (aka the “3-3-3 triangle group”).

Artin groups appear very similar to Coxeter groups on a surface level. Start with
your favorite Coxeter matrix M or Coxeter diagram Γ, but then form a group with
the presentation

A = AM = AΓ := ⟨ si | sisjsi . . .︸ ︷︷ ︸
mij letters

= sjsisj . . .︸ ︷︷ ︸
mij letters

, i ̸= j ⟩.

As with Coxeter groups, we call the pair (A,S) an Artin system.
One can easily verify that by adding in the relations s2i = 1, we attain the

corresponding Coxeter group WΓ. We let π = πΓ = πM : AΓ → WΓ denote the
homomorphism sending si to ri. (In fact, there is a set-theoretic section σ :W → A
sending ri to si, but the existence of this section is non-trivial.)

The prototypical example of an Artin group is the Braid group on n-strands Brn,
which has diagram
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· · ·

The corresponding Artin group is Sn.
While we know a great deal about Coxeter groups, and the presentation of

Artin groups are very similar to that of Coxeter groups, surprisingly, we know
nearly nothing about Artin groups. The word problem, conjugacy problem, and
almost anything else you might think to ask about Artin groups are unknown,
except in special cases. This can be attributed to the fact that Coxeter groups in
general possess deep connections to well-studied geometry, while the geometry of
Artin groups remains mysterious in general. Much of this course will focus on said
geometry, which, as we’ve gestured toward, relies heavily on complexes of groups
and CAT(0) spaces.

2. Constant curvature Riemannian manifolds

We begin the more formal part of the survey with some prerequisite material
on the simply connected Riemannian manifolds of constant curvature κ. We won’t
need details regarding the Riemannian structure, we’ll mostly just cover some of
the interesting theorems. This section mostly follows Bridson and Haefliger, Ch I.2

Definition 1. We let Mn
κ denote the (unique!) simply connected Riemannian

n-manifold of constant curvature κ. When n = 2, we will sometimes call M2
κ the

κ-model plane.

There are three broad classes of these manifolds, which we can use to give simple
descriptions of these spaces solely as metric spaces. Namely, these can be grouped
into those manifolds with κ negative, positive, and equal to 0. In fact, each manifold
in these respective classes are simply scalings of the spaces Mn

−1, M
n
1 , and Mn

0 ,
respectively. So it suffices to describe these spaces. We’ll discuss the geodesics,
angles, and hyperplanes, as these become important pretty soon (particularly the
geodesics).

2.1. Euclidean space (κ = 0). We let En denote a fixed n-dimensional real vector
space on basis {ei} equipped with the standard Euclidean inner product

(x, y) :=

n∑
i=1

xiyi,

where x = x1e1 + · · · + xnen and y = y1e1 + · · · + ynen. This of course comes
with the standard norm ∥x∥2 = (x, x) and Euclidean distance dE(x, y) = ∥x− y∥.
Endowed with this metric, En is (isometric to) our model space Mn

0 .
There isn’t much that you probably don’t know about En. The geodesics are

affine lines, angles are usual angles induced by the inner product, and hyperplanes
are affine subspaces of codimension 1.

2.2. The sphere (κ > 0). The n-sphere Sn is the usual set of unit vectors in Rn+1,
namely {

x = (x1, . . . , xn+1) ∈ Rn+1 : (x, x) = 1
}
.

However the usual metric is of course not induced from Rn+1. Rather, it’s the
function dS : Sn × Sn → [0, π] uniquely defined by

cos dS(A,B) = (A,B).
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(Check BH for details on why this is a metric.) Then the sphere with this metric
gives us the model space Mn

1 .
We can view Sn ⊆ Rn+1 to get a quick description of the geodesics and hyperplanes.

The geodesics are the intersection of Sn with 2-dimensional linear subspaces of Rn+1,
and the hyperplanes are intersection of Sn with codimension-1 linear subspaces of
Rn+1.

Angles are slightly trickier to define. Let γi = Vi ∩ Sn with Vi ⊆ Rn+1 a 2-
dimensional linear subspace for i = 1, 2. Then V1 ∩ V2 = Ru for some unit vector u.
Pick a ui ∈ Vi orthogonal to u. Then the angle between the geodesics γ1 and γ2 is
the α ∈ [0, π] satisfying

cosα = (±u1,±u2),

where the sign gives the different supplementary angles.

2.3. Hyperbolic space (κ < 0). In Riemannian geometry, one usually defines
hyperbolic space via the disk/ball/Poincaré model, but for our purposes (and to
give a more unified presentation), we’re going to use the hyperboloid/Minkowski
model.

We let En,1 denote a fixed n-dimensional real vector space on basis {vi} endowed
with the symmetric bilinear form given by

⟨x, y⟩ =
n∑

i=1

xiyi − xn+1yn+1,

the standard non-degenerate bilinear form of type (n, 1) (hence the naming conven-
tion). Then we define hyperbolic n-space to be the set

Hn =
{
x ∈ En,1 : ⟨x, x⟩ = −1, xn+1 > 0

}
.

Why: The equation ⟨x, x⟩ = −1 defines a hyperboloid of two sheets in Rn+1, so
requiring xn+1 > 0 gives us a single sheet.

Now the metric can be defined similarly to the spherical case. Namely, we let
dH : Hn ×Hn → [0,∞) denote the function uniquely defined by

cosh dH(A,B) = −⟨A,B⟩.

(Again, see BH for details.) Then Hn with this metric gives us the model space
Mn

−1.
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Geodesics are also defined similarly to the spherical case. If V is a 2-dimensional
vector subspace of En,1 (and intersects Hn non-trivially), then V ∩Hn is a geodesic,
and all geodesics of Hn arise in this way. Angles and hyperplanes are defined
completely analogously as well.

2.4. The model spaces. Now, we can define the spaces Mn
κ in terms of the above

metric spaces. In fact, they’re just scalings of these spaces.

Definition 2. For κ ∈ R, we define Mn
κ to be

(1) Euclidean space En with the above metric if κ = 0
(2) Hyperbolic space Hn with the metric 1√

−κ
dH if κ < 0

(3) The sphere Sn with the metric 1√
κ
dS if κ > 0.

The following are easy consequences of the definitions.
Proposition 3.

(1) Mn
κ is a geodesic metric space.

(2) If κ ≤ 0 then Mn
κ is uniquely geodesic and all balls are convex.

(3) If κ > 0 then there is a unique geodesic segment joining x, y ∈Mn
κ if and

only if d(x, y) < π/
√
k, and closed balls of radius < π/(2

√
κ) are convex.

For a number of reasons it becomes useful to make the following definition.

Definition 4. For κ ∈ R, we denote the diameter of Mn
κ by Dκ. Explicitly,

Dκ =

{
π√
κ

κ > 0

∞ κ ≤ 0

Then our previous proposition can be rephrased more succinctly as “Mn
κ is

Dκ-uniquely geodesic.”

3. Simplices in Mκ

Before moving on further, it will be useful to discuss the definition and some
basic properties of simplices in the model spaces.

Definition 5. Let κ ∈ R and 0 ≤ n ≤ m be integers. An n-plane in Mm
κ is a

subspace which is isometric to Mn
κ . We say that n+ 1 points of Mm

κ are in general
position if there is no (n− 1)-plane containing them. Then a (geodesic) n-simplex
σ ⊆ Mm

κ is the convex hull of n + 1 points in general position. These points are
called the vertices of σ. Note: If κ > 0, we require the points lie in an open ball of
radius Dκ/2.

A subset T ⊆ S is called a face if it’s the convex hull of a collection of vertices
of S. It’s called a proper face if T ̸= S. (Note that faces are also simplices.) The
interior of S is the set of points which don’t lie in a proper face.

It will become useful later to determine a criteria for such simplices to exist.
While there are criteria for each of the model spaces, the simplest and most useful
for us will be to examine the spherical case. The following comes from Davis, §6.8.

Let σ ⊆ Sn ⊆ Rn+1 be an n-simplex. There are n+ 1 codim-1 faces, which we
index by {σ0, . . . , σn}. Let ui ∈ Rn+1 be the “inward-pointing” unit normal to σi.
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This means σ and ui lie on the same side of the hyperplane (ui, x) = 0. Thus by
definition,

σ =

n⋂
i=0

{x ∈ Sn : (ui, x) ≥ 0 } .

The dihedral angle θij of σ between σi and σj is then

θij = π − cos−1
(
(ui, uj)

)
= cos−1(−(ui, uj)).

Proposition 6. Suppose we are given numbers 0 < θij = θji < π when 0 ≤ i < j ≤
n and θii = π. Then there exists a simplex σ ⊆ Sn with dihedral angles θij if and
only if the matrix (− cos θij) is positive definite.

Proof. If σ is a simplex then − cos(θij) = (ui, uj) and thus the matrix is positive
definite.

Conversely, suppose A = (− cos θij) is positive definite. Then since A is also
symmetric, we can find a non-singular U such that U tU = A (e.g. the square root of
A). Let u0, . . . , un be the column vectors of U . Note these are linearly independent.
Since the diagonal entries of A are 1, the ui are unit vectors. The half-spaces
(x, ui) ≥ 0 have non-empty intersection (as a consequence of linear independence).
Thus their intersection defines a spherical simplex with dihedral angles θij . □

4. Geometric reflection groups

To make the standard geometry of Coxeter groups immediately clear, let’s talk
about geometric reflection groups while these constant curvature spaces are still
in our head. By a geometric reflection group, we mean a discrete subgroup of
Isom(Mn

κ ) for some n and some κ which is generated by reflections. But what is a
reflection in Mn

κ ?

Definition 7. A reflection r ∈ Isom(Mn
κ ) is an isometry of order 2 (r2 = id) whose

fixed point set, denoted Mr, is a hyperplane (as defined above). We sometimes
call Mr the wall of r. We then call W = ⟨S⟩ ≤ Isom(Mn

κ ) a (geometric) reflection
group if S is a (necessarily finite) set of reflections and W is discrete in Isom(Mn

κ ).

Note that each of these isometry groups are Lie groups1 (hence the notion of a
discrete subgroup is well-defined).

Example 8. The group generated by reflections about the faces of a right-angled
n-gon in H2 is a geometric reflection group.

We have the following interesting theorem, which we won’t prove (yet, but might
later?).

Theorem 9. Every geometric reflection group is a Coxeter group.

The converse is not true in general. However, it is known exactly when a given
Coxeter group gives a geometric reflection group, and on what type of space (negative,
positive, or zero curvature). So we’re not overwhelmed at first, let’s focus just on
the case of reflection groups in Sn, since this turns out to be the most important
kind in general anyway.

1In fact, they’re each generated by reflections. However, of course the isometry groups are not
themselves discrete, and thus are not referred to as “reflection groups”. (And there are certainly
isometries which aren’t reflections.)
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Since this space is compact, it’s easy to see that any reflection group on it will
be finite. Less obvious is the following

Proposition 10. If W is a finite Coxeter group, then it admits a free, faithful
action as a geometric reflection group on Sn for some n.

In other words, a Coxeter group is finite if and only if it’s a geometric reflection
group on Sn. We will prove this proposition, since it gives us a chance to introduce
one of the main players in the study of Coxeter groups.

Definition 11. Let M = (mij)i,j∈I be a Coxeter matrix with (W,S) the corre-
sponding Coxeter system. Let V = RI with basis {ei}i∈I . Define a symmetric
bilinear form B = BM on V by

B(ei, ej) = − cos(π/mij).

We then define linear reflections ri ∈ O(BM ) ⊆ GL(V ) by

ri(x) = x− 2B(x, ei)ei.

Then, let r : S → GL(V ) be the map r(si) = ri.

Proposition 12. The map r : S → GL(V ) extends to an injective homomorphism
ρ :W → GL(V ) mapping si 7→ ri. Moreover, ρ(W ) is a discrete subgroup of GL(V ).

This is called the canonical representation of W . It and its dual (which we might
discuss later) are one of the central objects we’ll discuss, in particular for finite
Coxeter groups. Proving this theorem is definitely outside the scope of these notes.
(It’s not that hard, but it takes a lot more machinery.)

How do we use this to show finite Coxeter groups act on Sn as geometric reflection
groups? It is a known fact that any finite-dimensional representation of a finite
group preserves a positive definite form. In particular, this form gives a Euclidean
metric. Since it preserves the positive definite form, it also preserves its set of unit
vectors, and thus the unit sphere. Since it’s finite, it’s necessarily a discrete group.

There are a couple basic reasons why we care about this representation. One of
the main ones is just that we can better visualize the structure of W . Another is
that it allows us to define some basic building blocks that we’ll rely on very heavily
later. And one more won’t reveal itself until probably the end of the course.

Let’s describe the first two at the same time now.
Since ρ is a faithful representation of W , we’ll often conflate w and ρ(w) for

w ∈W . In particular, for w ∈W , we let V w denote the fixed set of ρ(w).

Definition 13. Let (W,S) be a Coxeter system. The set of reflections for W is
defined to be R =

{
w−1sw : s ∈ S,w ∈W

}
, the conjugates of the generators S.

Sometimes the elements of S are called the basic reflections.

This terminology comes from the fact that ρ(W ) contains elements which are not
reflections, and in fact, the reflections are precisely the conjugates of the ρ(si).

There are two perspectives we’ll use now, which somewhat go hand in hand.
First, the more classical viewpoint.

Definition 14. Consider a finite Coxeter group W acting on an n+ 1 dimensional
vector space V with the above representation. We fix a simplicial cone C0, the
intersection of the half-spaces

{(x, ei) ≥ 0} .
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We form a simplicial decomposition of the sphere based on this cone. Namely, we
examine the translates of C := Sn ∩ C0. This is a spherical simplex (check!), which
we call the fundamental chamber of W . It is part of a collection of so-called (open)
“chambers” of Sn; these are the connected components of Sn\

⋃
r∈R V

r. The closure
of any given chamber (referred to as simply a “chamber”) has a decomposition
into facets, corresponding to the intersection of said chamber with various walls V r.
Moreover, this induces a simplicial structure on the sphere, which we sometimes call
the Coxeter complex C = C(W,S) of W . We call a 0-dimensional facet a vertex,
1-dimensional an edge, 2-dim a face. It is clear from the definition of chamber and
the W -action that W preserves this cell structure, and in particular preserves the
set of chambers. We will later show that in fact W acts simply transitively on the
set of chambers.

Example with Kaleidotile
So, this gives a classical simplicial complex. But there’s another viewpoint, which

seems identical at first, but actually turns out to be incredibly useful.

Definition 15. Let x ∈ V be a generic point for the action of W (i.e., has trivial
stabilizer, i.e., doesn’t intersect any walls). Consider Σ = Σ(W,S), the convex hull
of the orbit Wx of x under W . Since W is finite, this gives us a polytope in V . The
natural cell structure on this polytope is a cellulation of the ball whose boundary
∂Σ is a cellulation of the sphere. We call Σ a Coxeter polytope.

Proposition 16. The boundary ∂Σ is dual to the Coxeter complex C.

Kaleidotile again
Later, we will put a specific metric on Σ, but we note that the choice of base

point does not change the combinatorial type of Σ.

4.1. Tangent on Artin groups. While we’re discussing the canonical represen-
tation, now would actually be a great time to bring Artin groups into the picture
as well. It turns out that in addition to the similar definition, their geometry (or
at least, the geometry which is currently believed to be the most worth studying)
comes from a similar place, although perhaps unexpectedly. The motivating fact is
the following.

Theorem 17. Let Γ be a Coxeter diagram whose corresponding Coxeter group WΓ

is finite. Let ρ :W → GL(V ) be the canonical representation. Consider the diagonal
action of W on V × V via ρ, i.e.,

w · (v1, v2) := (wv1, wv2).

Define

X = V × V −
⋃
r∈R

V r × V r,

Y = X/W.

Then

AΓ = π1(Y ),

ker(AΓ →WΓ) = π1(X).
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For various reasons, including this theorem, the Artin groups AΓ corresponding to
the finite WΓ are usually called spherical-type, and the finite WΓ are called spherical.

We probably won’t prove this theorem just for the sake of time. It’s not incredibly
elucidating, it’s mostly just giving the construction of the loops in the π1 then
proving they work. However this result belies the following conjecture, probably
one of the more famous problems regarding Artin groups:

Theorem 18. When A is a spherical-type Artin group, Y is a K(A, 1).

Eventually, we’ll relate Y even more explicitly to the canonical representation
(actually, to C(W,S), cell structure and all). In addition, we’ll generalize this to
arbitrary Coxeter and Artin groups2, which gives the famous “K(π, 1) conjecture,”
one of the most prominent unsolved problems in Artin groups today. This general-
ization is a bit more complicated than I care to get into now, so let’s move on for
now before we get bogged down in the group theory side of things.

5. Curvature for metric spaces

There are many ways to extend the notion of curvature to arbitrary metric
spaces. For example, Gromov’s definition of δ-hyperbolicity (among his other work)
essentially begat the field of geometric group theory. There have been many other
generalizations of curvature as well. Typically, the best way to describe curvature
is to examine how fast geodesics diverge. We will focus on a broadly-adopted
characteristic typically credited to Cartan, Alexandrov, and Topongonov. This
definition can be roughly interpreted as putting an “upper bound” on the curvature
of a space, which, like in the case of Riemannian manifolds of non-positive curvature,
has been successful in producing a wide variety of results (which we get into later).
The way this is accomplished is by comparing the “thinness” of triangles of the
given metric space to the triangles in a given model plane. We go over these details
now.

Before we can do anything, we need the proper notion of a geodesic in a metric
space (X, d). Like in Riemannian manifolds, these are the local isometries from R
to X. More explicitly, they’re the locally injective maps γ : R → X so that

d(γ(a), γ(b)) = |b− a|

for all a, b ∈ R. We call a metric space a geodesic metric space if any two points can
be joined by a (not necessarily unique) geodesic. Similarly, we call a metric space
an ℓ-geodesic metric space if every two points of distance no greater than ℓ can be
joined by a geodesic.

A geodesic segment is a restriction of a geodesic γ to an interval [a, b], and a
geodesic ray is the restriction of a geodesic to an interval [a,∞) or (∞, b]. Often we
conflate the map with its image when we talk about geodesics.

Throughout the rest of the notes, we will fix κ ∈ R, and let (X, d) denote a
Dκ-geodesic metric space, and if we just say “metric space” we probably mean
“Dκ-geodesic metric space”

2Fun fact: it took some time to generalize this properly after these ideas were first posed in
terms of the finite case.
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5.1. Comparison triangles. Triangles in a metric space are what one would
probably expect; three geodesic segments with shared endpoints. More rigorously, a
triangle T is a collection of geodesic segments γi : [ai, bi] → X with

γ1(b1) = γ2(a2)

γ2(b2) = γ3(a3)

γ3(b3) = γ1(a1).

These are the vertices of the triangle. Often we’ll make reference to the triangle
being the union of the images of the geodesic segments, namely

T =
⋃
γi([ai, bi]) ⊆ X

Since X is a geodesic metric space, given any three points in X we can form a
triangle whose vertices are the given points. Note this isn’t necessarily unique, but
the side lengths will always be the same.

We let ℓi = |bi − ai| denote the side lengths of a triangle. In order to compare
the thinness of triangles, we’d hope that a triangle in a given model plane would
exist. Thankfully, we know exactly when they do!

Lemma 19 (BH Lemma 2.14). Let κ ∈ R and let p, q, r ∈ X with d(p, q) + d(q, r) +
d(r, p) < 2Dκ. Then there are three points p̃, q̃, r̃ ∈M2

κ so that

d(p̃, q̃) = d(p, q)

d(q̃, r̃) = d(q, r)

d(r̃, p̃) = d(r, p).

We won’t prove this here, see BH for proof.
As a consequence, we can make the following definition.

Definition 20. Let κ ∈ R, and let T =
⋃
γi([ai, bi]) be a triangle in X with

perimeter < 2Dκ and vertices p, q, r. Let p̃, q̃, r̃ denote the corresponding points
from the Lemma. Then we define the κ-comparison triangle T̃ for T to be the
triangle in M2

κ whose sides are given by [p̃, q̃], [q̃, r̃], and [r̃, p̃].

γ3
γ1

γ2

|γ1| |γ3|

|γ2|

Figure 1. Comparison triangles

Now, we need a notion of comparing the thinness of triangles between these two
spaces. This is given by the following.
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Definition 21. Let T =
⋃
γi([ai, bi]) be a triangle in X with perimeter < 2Dκ. Let

T̃ =
⋃
γ̃i([ai, bi]) the corresponding comparison triangle in M2

κ . Choose points a in

γi
(
(ai, bi)

)
and b in γj

(
(aj , bj)

)
. Form “comparison points” ã, b̃ in M2

κ by choosing

the (unique) points ã on γ̃i
(
(ai, bi)

)
and b̃ on γ̃j

(
(aj , bj)

)
which satisfy

d(p̃, ã) = d(p, a)

d(p̃, b̃) = d(p, b).

where p is the shared vertex of γi and γj . We say that T is κ-thin if

d(a, b) ≤ d(ã, b̃).

for all choices of a, b ∈ T . (See Figure 2.)

γ3
γ1

γ2

b

a

|γ1| |γ3|

|γ2|

ã

b̃

Figure 2. The CAT(κ) inequality

Definition 22. If κ ≤ 0, then X is called a CAT(κ) space if X is a geodesic metric
space and all of the triangles in X are κ-thin.

If κ > 0, then X is called a CAT(κ) space if X is a Dκ-geodesic metric space and
all of the triangles in X are κ-thin.

Note: X doesn’t have to be complete! Exercise: find a non-complete CAT(0)
space. Harder: find one that isn’t contractible (or even simply connected).

Before we give examples, we want to make use of the following relaxation of the
CAT(κ) condition.

Definition 23. We say X has curvature ≤ κ if it is locally CAT(κ); that is, every
point has a neighborhood which is CAT(κ) under the induced metric. If κ = 0 here,
then we often say X is non-positively curved.

Now some examples
Examples 24.

(1) Normed linear spaces are CAT(0) under the metric induced by the norm.
(Any triangle lives in a 2d subspace)

(2) Convex subsets of En are CAT(0).
(3) The product of CAT(0) spaces is CAT(0)
(4) A metric simplicial graph is CAT(κ) if and only if every locally embedded

loop of length < 2Dκ is embedded. In particular, a tree is CAT(κ) for all
κ ∈ R.
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Where do we get more interesting examples? Well, in GGT, they typically
come from so-called Mκ-polyhedral complexes, the higher dimensional analogue of
Example 24.4, but we’ll discuss those in a minute. First, let’s prove some things
about general CAT(κ) spaces.

6. Properties of CAT(κ) spaces

First, an interesting result relating our notion of curvature bounded above for
metric spaces, and the traditional curvature of manifolds.

Theorem 25 (BH Ch. II.1 Thm 1A.6). A smooth Riemannian manifold M has
curvature ≤ κ as a metric space if and only if the sectional curvature of M is ≤ κ.

The proof is quite long and technical, so we won’t cover it here. But, it does
illustrate that “curvature ≤ κ” for metric spaces is good terminology.

One of the really nice things about CAT(κ) spaces compared to, say δ-hyperbolic
spaces, is that there is a good notion of the “angle” between geodesics.

Definition 26. Let X be a geodesic metric space, and let ci : [0, ai] → X, i = 1, 2
be geodesic paths with c1(0) = c2(0) =: p. For ti ∈ (0, ai], let ∆t1,t2 be the

geodesic triangle with vertices p, c1(t1), and c2(t2). Let ∆̃t1,t2 be the corresponding

comparison triangle in M2
0 . Let ∠̃p(c1(t1), c2(t2)) be the usual Euclidean angle of

∆̃t1,t2 at the vertex corresponding to p. The (Alexandrov or upper) angle between
the paths c1 and c2 is the number ∠(c1, c2) ∈ [0, π] defined by

∠(c1, c2) = lim sup
t1,t2→0

∠̃p(c1(t1), c2(t2))

= lim
ε→0

sup
0<t,t′<ε

∠̃p(c1(t1), c2(t2)).

If X is uniquely geodesic and p ≠ x, p ̸= y, then the angle between the segments
[p, x] and [p, y] may be denoted ∠p(x, y).

Proposition 27. With the above set up,

cos(∠̃p(c1(t1), c2(t2))) =
1

2t1t2

(
t21 + t22 − dX(c1(t1), c2(t2))

2
)
.

Proof. Exercise. □

This gives us another interesting/useful criteria for determining when a space is
CAT(κ).

Proposition 28. X is a CAT(κ) space if and only if for every non-degenerate
geodesic triangle ∆ in X, the upper angle between any two sides is no greater than

the κ-comparison triangle ∆̃.

In particular, angles exist for any pair of geodesic segments in a CAT(κ) space.

Proof. Exercise; good for working out definition. □

Using this we can more easily derive the following.

Theorem 29.

(1) If X is a CAT(κ) space, then it is a CAT(κ′) space for all κ′ ≥ κ.
(2) If X is a CAT(κ′) space for every κ′ > κ, then it is a CAT(κ) space.
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Proof of (1). Suppose X is CAT(κ) and let κ′ ≥ κ. In particular, X is Dκ-geodesic.
Then since Dκ is decreasing in κ, we see X is Dκ′ -geodesic.

Suppose ∆ is a geodesic triangle in X of perimeter < 2Dκ, and let ∆κ and ∆κ′

be the M2
κ and M2

κ′ comparison triangles, respectively. If we take p, q ∈ ∆ and the
respective comparison points pκ, pκ′ and qκ, qκ′ in ∆κ and ∆κ′ , we can somewhat
intuitively see that

dMκ
(pκ, qκ) ≤ dMκ′ (pκ′ , qκ′),

or equivalently, that the angle at the vertices of ∆κ is no greater than the corre-
sponding angle of ∆κ′ . Although the full rigorous argument is actually quite a bit
more technical; see BH CH II.1 Lemma 1.13 for the full argument. □

Proof of (2). Let x, y ∈ X with d(x, y) < Dκ. Then d(x, y) < Dκ′ for all κ′ > κ
sufficiently close to κ. In particular, if X is Dκ′-geodesic for all κ′ > κ then X is
Dκ-geodesic.

Let ∆ be a geodesic triangle in X of perimeter < 2Dκ with vertices p, q, r. Choose

κ′ > κ sufficiently close so that ∆ has perimeter < 2Dκ′ . Let ∆̃ be the κ′-comparison
triangle. Let a, b, c be the side lengths of ∆. Let γ be the angle between the sides

of length a and b in X and let γ̃ be the corresponding angle in ∆̃. There are three
cases to consider for κ but all are similar, so we’ll just cover the case where κ > 0.

In this case, the law of cosines in M2
κ applied to ∆̃ gives

cos(c
√
κ′) = cos(a

√
κ′) cos(b

√
κ′) + sin(a

√
κ′) sin(b

√
κ′) cos(γ̃),

or rearranging, it gives

cos(γ̃) =
cos(c

√
κ′)− cos(a

√
κ′) cos(b

√
κ
′
)

sin(a
√
κ
′
) sin(b

√
κ
′
)

. (1)

But by the previous characterization of CAT(κ) spaces, we know that γ ≤ γ̃. Since
(1) clearly varies continuously with κ′, and γ ≤ γ̃ for all κ′ > κ sufficiently close, it
must hold for the κ-comparison triangle as well. Therefore X is CAT(κ). □

The following is one of the main reasons we care about CAT(κ) spaces.

Theorem 30. Let X be a CAT(κ) space. Then for every pair of points x, y ∈ X
with d(x, y) < Dκ, there is a unique geodesic segment joining x and y. Moreover,
this segment varies continuously with its endpoints.

Proof (from BH). Consider x, y ∈ X with d(x, y) < Dκ. Let [x, y] and [x, y]′ be
geodesic segments joining x to y, let r ∈ [x, y], r′ ∈ [x, y] be such that

d(x, r) = d(x, r′).

Let [x, r] and [r, y] be the segments whose union is [x, y]. Then any comparison
triangle in M2

κ for the triangle with edges [x, r], [r, y], [x, y]′ is degenerate since
d(x, r) + d(r, y) = d(x, y) = ℓ([x, y]′). Thus the comparison points for r and r′ are
the same. Hence by the CAT(κ) inequality, d(r, r′) = 0.

To show the geodesics vary continuously, we make note of a technical result
from [BH]. Given any positive ℓ < Dκ, there is a constant C = C(ℓ, κ) such that
if c, c′ : [0, 1] → M2

κ are two “linearly parameterized” geodesic segments3 and if
c(0) = c′(0), then d(c(t), c′(t)) ≤ Cd(c(1), c′(1)) for all t.

3This means there is a constant λ such that d(c(t), c(t′)) = λ|t− t′| for all t, t′.
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Now, let xn and yn be sequences of points converging to x and y, resp. We may
assume d(xn, yn) < ℓ and d(x, yn) < ℓ for some positive ℓ < Dκ. Let c, cn, c

′
n be

linear parameterizations of the geodesics [x, y], [xn, yn], [x, yn], resp. By the CAT(κ)
inequality,

d(c(t), cn(t)) ≤ d(c(t), c′n(t)) + d(c′n(t), cn(t))

≤ C(d(y, yn) + d(x, xn)).

Hence cn → c uniformly. □

Why is this important?

Corollary 31. If X is a CAT(κ) space and B is a ball of radius < Dκ, then B is
contractible. In particular, CAT(0) spaces are contractible.

Proof. Let x be the point at which B is centered. The map B × [0, 1] → X sending
a point (y, t) to the point at distance td(x, y) from y on the geodesic [x, y] is a
continuous retraction from B to x. □

This is a great criteria for showing a space is contractible, especially in the context
of the material in the following couple sections. In fact, we have another great result
regarding contractability of the universal cover of a space that we’ll discuss later.

7. Polyhedral Cell Complexes

An Mκ-polyhedral cell complex is essentially a cell complex where each cell is
given the metric of a polyhedra in Mn

κ . To make this more rigorous we need a
couple definitions.

Definition 32. An Mκ-polyhedron P (sometimes called a convex polytope) is the
non-empty intersection of finitely many halfspaces of Mn

κ . This endows P with a
natural cell structure corresponding to the “facets” of the polyhedron. If κ > 0 then
we require this intersection to be contained in a ball of radius Dκ/2. The dimension
of P is the dimension of the smallest “subspace” containing it. If x ∈ P , then the
“support” of x, denoted supp(x), is the smallest closed facet of P containing x.

Definition 33. Let {Cλ} be a family of Mκ-polyhedra, and let X be their disjoint
union. Let ∼ be an equivalence relation on X, and let K = X/ ∼. Let p : X → K
be the natural projection and pλ : Cλ → K the restriction of p to Cλ. We call K an
Mκ-polyhedral complex if

(1) pλ is injective on the interior of Cλ, and
(2) If x ∈ Cλ and y ∈ Cµ with pλ(x) = pµ(y), then there is an isometry

h : supp(x) → supp(y) such that pλ(x0) = pµ(h(x0)) for all x0 ∈ supp(x)

We denote the set of isometry classes of faces of K by Shapes(K)

This is a technical way of saying “the gluing maps are isometries”. Note that the
condition (1) allows for self-gluings along the boundary of a given polyhedron.

Example 34. Any polyhedron in En is an M0-polyhedral complex. Any convex
tiling of X2 (where X = S,E,H) is an Mκ-polyhedral complex. Cube complexes4

are by definition M0-polyhedral complexes.

4These are complexes where the cells are isometric to Euclidean cubes [−1, 1]n with no self-
gluings. Sometimes we say “cubical complex” if the complex has self-gluings.
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So when are these spaces CAT(κ)? First, we need to discuss the natural metric
that a polyhedral complex is endowed with in order for this question to make sense.
You could define it as the induced pseudometric from the projection X → K, but
there’s a nicer more intuitive description in terms of geodesics.

Definition 35. A piecewise geodesic (segment) in a polyhedral complex K is a
map c : [a, b] → K which has a subdivision a = t0 ≤ t1 ≤ · · · ≤ tk = b so that
ci = c|[ti−1,ti] is a geodesic within some Cλi , and for each t ∈ [ti−1, ti] we have
c(t) = pλi

(ci(t)). If c is a piecewise geodesic, its length is

ℓ(c) =

k∑
i=1

ℓ(ci).

We then have a well-defined pseudometric dK(a, b) given by taking the shortest
length among the piecewise geodesics connecting a and b

In fact, we have the following

Theorem 36 (BH Ch I.7 Th 7.50). If K is anMκ-polyhedral complex and Shapes(K)
is finite, then (K, dK) is a complete geodesic metric space.

The condition that Shapes(K) be finite is entirely reasonable; in practice most
polyhedral complexes have only finitely many isometry types of faces (e.g., if there
is a cocompact group action).

Some of the primary reasons for studying these polyhedral complexes is that they
allow us to more readily show they’re CAT(κ), and that they arise naturally in the
study of complexes of groups. We’ll discuss complexes of groups in a minute, but
we need some more combinatorial properties first.

7.1. Cell complexes and posets. The following material becomes important
when we discuss complexes of groups, and the complex of groups for a Coxeter
group in particular. I’ll try to keep it brief so we’re not so insanely overwhelmed
with new material all at once.

Definition 37. Let X be a cell complex. The barycentric subdivision bX of X
is the simplicial complex whose vertices are indexed by the cells of X, and where
a set of vertices V = {c0, . . . , cn} span an n-simplex if and only if the cells ci are
“linearly” nested in X, i.e.,

c0 ⊆ c1 ⊆ · · · ⊆ cn.

If P is any poset, we define the derived complex P ′ of P to be the set of chains
(linearly ordered subsets) of P, itself ordered by inclusion. This is an “abstract
simplicial complex” (meaning it’s a poset of sets ordered by inclusion and closed
under subsets). Every abstract simplicial complex has a geometric realization |P ′|;
a simplicial complex whose set of simplices ordered by inclusion is order-isomorphic
to P ′. More explicitly, |P ′| is a simplicial complex whose vertices are the elements
of P , and a set of vertices {a0, . . . , an} span an n-simplex if and only if it’s linearly
ordered. We denote this simplex by

[a0, a1, . . . , an].

Proposition 38. If X is a cell complex and P is its poset of cells ordered by
inclusion, then bX is isomorphic to |P ′|.
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Proof. Exercise. □

Example 39. Let X = [0, 1]2. Label the cells as in Figure 3. Let P be the
poset of faces of X. The barycentric subdivision of X is given in Figure 4. The

abcd

a b

c d

ab

ac bd

cd

Figure 3. The cell complex X

abcd

a b

c d

ab

ac bd

cd

Figure 4. The barycentric subdivision bX of X

(n− 1)-simplices of bX correspond directly to the chains of length n in P.

Proposition 40. As topological spaces, bX is homeomorphic to X. In fact, if X is
an Mκ-polyhedral complex, then bX is an Mκ-simplicial complex and is canonically
isometric to X (as metric spaces).

Proof. Exercise. (Starting point: the vertices of bX are the barycenters (the “center
of mass”) of the corresponding cells of X.) □

Definition 41. Suppose X is a polyhedron5 in Mn
κ . The dual X∗ of X is the

polyhedron whose proper m-faces (i.e., 0 < m < n) are the (n−m)-faces of X, with
adjacency preserved.

Proposition 42. If X is a polyhedron and P is its set of cells ordered by inclusion,
then Pop is the set of cells of X∗ ordered by inclusion.

Example 43. The dual of a cube is an octahedron, the dual of a tetrahedron is a
tetrahedron, etc.

5Recall this is a non-empty intersection of finitely many halfspaces, equiv. the convex hull of
finitely many points.
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Definition 44. Let P be a poset, and let a ∈ P. Then the face of a in P is

P≤a = { b ∈ P : b ≤ a } ,
and the coface of a in P is

P≥a = { b ∈ P : b ≥ a } .
Replacing ≤ and ≥ with their strict counterparts gives the lower link and upper
link of a in P.

This terminology comes from the following observation: if X is a cell complex
and P is its set of cells, then the face P≤a is the “face” of a in X, meaning, the
subcomplex of X consisting of the closed cell a along with the cell structure coming
from X. Moreover, if X has a dual, then the coface is simply the face of a in the
dual of X.

8. Complexes of Groups

For the sake of simplicity (pun intended), these notes will focus on simple
complexes of groups. The ideas for general complexes of groups are very similar,
but much more technical to the point of obscuring the ideas, in my opinion. Plus,
we only need simple complexes of groups for what we’re doing here. For brevity,
I’ll probably just call them “complexes of groups” and omit the “simple” since all
complexes of groups here will be simple.

A complex of groups is a higher-dimensional analogue of the famous notion of a
graph of groups widely attributed to Serre. Essentially, it’s built to give a way of
reversing the process of quotienting a cell complex by a group action using only the
data of the quotient and cell stabilizers. Where it becomes more interesting is when
we involve metrics.

Anyway, enough chatter, here are the details.

Definition 45. A (simple) complex of groups G(Q) = (Gσ, ψτσ) over a poset (Q,≤)
consists of the following data:

(1) for each σ ∈ Q, a group Gσ, called the local group at σ, and
(2) for each τ < σ, an injective homomorphism ψτσ : Gτ → Gσ such that if

τ < σ < ρ, then

ψτρ = ψσρψτσ.

Two simple complexes of groups (Gσ, ψτσ) and (G′
σ, ψ

′
τσ) are simply isomorphic if

there is a family of isomorphisms φσ : Gσ → G′
σ such that

ψ′
τσφτ = φσψτσ.

We can also define a morphism φ from a complex of groups G(Q) to a group G; this
is a collection of homomorphisms φσ : Gσ → G for σ ∈ Q so that

φτ = φσψτσ

for each τ < σ. We say that φ is injective on the local groups if each φσ is injective.

Example 46. Stallings’ triangles of groups. 1-simplex of groups.

Example 47. Let (W,S) be a finite Coxeter system, (A,S) the associated Artin
system, and let S denote the power set of S. For T ⊆ S and G =W or A, let GT

denote the subgroup of G generated by T . We can build a complex of groups G(S) on
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S by declaring the local groups to be the GT , and the morphisms ψTU :WT →WU

to be those induced from the inclusion T ⊆ U . Although, without more work,
we don’t necessarily know these maps are inclusions, hence we don’t know if this
actually determines a complex of groups. It turns out they are, but it will take
some work to show this. These are the two motivating examples of complexes of
groups, and we’ll discuss them in great detail in the future.

So where does this come from? As mentioned before, it’s based on the action of
a group on a cell complex; we make that rigorous now.

Definition 48. Let X be a cell complex, and consider a cellular action G
⟲
X with

a strict fundamental domain6 Y . Let Q be the poset of cells of Y . We then associate
a simple complex of groups G(Q) = (Gσ, ψτσ) to this action as follows. We let
Gσ be the stabilizer in G of the cell σ of Y , and ψτσ : Gτ → Gσ is the inclusion
homomorphism in G for cells τ ⊆ σ. Then the inclusion maps φσ : Gσ → G define
a morphism φ : G(Q) → G which is injective on the local groups.

If a simple complex of groups G(Q) arises in this fashion, then it is called (strictly)
developable.

Why go through the trouble of all this abstract nonsense? One of the main
reasons for defining complexes of groups is the following (this is the generalization
of the development of a graph of groups in Bass-Serre theory).

Theorem 49 (The Basic Construction). Let Y be a cell complex, and let Q be
its set of cells ordered by inclusion. Let G(Q) = (Gσ, ψτσ) be a simple complex of
groups over Q. Let G be any group, and let φ : G(Q) → G be a simple morphism
which is injective on the local groups. Then there is a cell complex D = D(Y, φ)
called the development of Y with respect to φ, satisfying

(1) Y is (isomorphic to) a subcomplex of D,
(2) There is a cellular action of G on D with strict fundamental domain Y

Note that this isn’t quite the full generality of the development of an arbitrary
complex of groups but this is all we’ll need, and it’s the most direct generalization
of Bass-Serre theory. For more details, see BH.

Proof. Note that since φ is injective on the local groups, we identify each Gσ with
its image φ(Gσ) ⊆ G. Note also that if τ < σ then Gτ ⊆ Gσ in G.

We define D(Y, φ) = G× Y/ ∼, where ∼ is the equivalence relation given by

(g, y) ∼ (g′, y′) ⇐⇒ y = y′ and g−1g′ ∈ Gσ(y),

where σ(y) is the smallest cell so that y ∈ σ(y). We denote the equivalence classes
by [g, y]. Then G acts by g′ · [g, y] = [g′g, y]. Note that Y may be identified with
{1} × Y . One then verifies this action has strict fundamental domain Y , and thus
defines a complex of groups, which is then verified to be simply isomorphic to
G(Q). □

In fact we’ve shown the following

Corollary 50. A simple complex of groups G(Q) is strictly developable if and only
if there is a group G and a morphism φ : G(Q) → G which is injective on the local
groups.

6This is a subcomplex of X which intersects each orbit Gx in exactly one point.
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Proof. If G(Q) is developable, say from an action G
⟲
X, then we saw that there

is a morphism G(Q) → G injective on the local groups. Conversely, the previous
theorem shows that if there is such a morphism φ : G(Q) → G, then G(Q) arises
from the action of G

⟲
D(Y, φ), and is hence developable by definition. □

We note that in the more general cases of an arbitrary complex of groups, there
is a weaker notion of developability, and it is possible for even a simple complex of
groups to be developable but not strictly developable. (But we probably won’t cover
that here.) For the time being, we’ll use “developable” and “strictly developable”
as synonyms for brevity, and due to the fact that we won’t be talking about general
developability.

8.1. General properties of complexes of groups. The following are useful basic
facts about complexes of groups.

Proposition 51. Let Y be a cell complex and Q the set of cells of X. Let G(Q)
be a simple complex of groups, G an arbitrary group, and φ : G(Q) → G a simple
morphism which is injective on the local groups.

(1) (Uniqueness) If X is a cell complex containing Y as a subcomplex and G acts
on X with strict fundamental domain Y such that the associated complex
of groups is isomorphic to G(Q), then the identity map in Y extends to a
G-equivariant isomorphism D(Y, φ) → X.

(2) (Functoriality) Let π : G→ G′ be a surjective homomorphism of groups. Let
φ′ : G(Q) → G′ be the morphism defined by φ′

σ = πφσ. If φ′ is injective
on the local groups, then the identity map on Y extends uniquely(!) to a
G-equivariant morphism p : D(Y, φ) → D(Y, φ′). The map p is a covering
projection and ker(π) acts freely and transitively on the fibers of p.

Proof.

(1) The map is given by [g, y] 7→ gy. (Check!)
(2) We define p : D(Y, φ) → D(Y, φ′) to be the map sending x = [g, y] to

x′ = [π(g), y]. Clearly, this is G-equivariant. (Check uniqueness.) Then

p−1(x′) = { [kx, y] : k ∈ kerπ } .
Let stY (y) denote the open star of y in Y and let σ be the smallest element
of st(y). Then, define Gy = φσ(Gσ) ≤ G and G′

y = φ′
σ(Gσ) ≤ G′. Then the

open star st(x) of x in D(Y, φ) is gGystY (y) and the open star st(x′) of x′ in
D(Y, φ′) is gG′

ystY (y) (check!). This shows p maps st(x) homeomorphically

onto st(x′) and p−1(st(x′)) is the disjoint union of the open sets k · st(x)
for k ∈ kerπ. Hence p is a Galois covering with Galois group kerπ. □

We collect some group-theoretic properties of the development here.

Proposition 52. Let Y be a cell complex and Q its poset of faces. Suppose G(Q)
is a complex of groups with a morphism φ : G(Q) → G which is injective on the
local groups. Let D = D(Y, φ) be the development, and let G0 ≤ G be the subgroup
generated by the φ(Gσ) ≤ G for the cells σ of Y . Let D0 = G0Y , the G0-orbit of
the fundamental domain Y .

(1) If gY ∩ Y ≠ ∅, then g ∈ Gσ for some σ. In fact, if σ is a cell of y and
g ∈ G, then the stabilizer in G of the cell [g, σ] of D is g−1Gσg.

(2) If gD0 ∩D0 ̸= ∅ then g ∈ G0, hence gD0 = D0.
(3) D0 is clopen in D.
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(4) D0 is connected if and only if Y is connected.
(5) D is connected if and only if Y is connected and G = G0.

Proof.

(1) This follows from the definition of the development, and the fact that Y is
a strict fundamental domain.

(2) If x ∈ gD0 ∩D0, then there are points y, y′ ∈ Y and elements g0, g
′
0 ∈ G0

such that x = g0y = (gg′0)y
′. But since Y is a strict fundamental domain,

we have that y = y′, and hence g−1
0 gg′0 ∈ Gσ where y ∈ σ.

(3) D0 is a subcomplex, hence closed. Suppose x ∈ σ, a cell of D, with x ̸∈ D0.
We claim that σ ∩D0 = ∅, hence the complement of D0 is a subcomplex
of D, hence closed, hence D0 is open. Choose g ∈ G so that gσ ⊆ Y . If
σ ∩D0 were non-empty then gD0 ∩D0 would be non-empty, so by part (2),
we would have gD0 = D0. However, x ∈ gX0 and x ̸∈ D0 by assumption.
Hence σ ∩D0 = ∅, as desired.

(4) Suppose Y is connected. Each g ∈ G0 is a product of elements g1, . . . , gk
from the various isotropy subgroups of Y . tk finish this proof

(5) Follows immediately from Part (4).

□

This inspires the following definition.

Definition 53. Let G(Q) be a (simple) complex of groups. We define the universal
group of G(Q) to be

Ĝ(Q) := lim−→
σ∈Q

Gσ,

the direct limit7 of the system (Gσ, ψτσ) of groups and morphisms. The natural

homomorphisms ισ : Gσ → Ĝ(Q) give a canonical simple morphism ι : G(Q) →
Ĝ(Q), where ι = (ισ). (Note: in general ισ isn’t injective!!)

Of course, this can also be defined in terms of universal properties.

Proposition 54. Given any group G and any simple morphism φ : G(Q) → G,

there is a unique homomorphism φ̂ : Ĝ(Q) → G such that φ = φ̂ ◦ ι (meaning
φσ = φ̂ ◦ ισ for each σ ∈ Q).

Conversely, clearly every homomorphism φ̂ : Ĝ(Q) → G induces a simple mor-
phism φ : G(Q) → G by φσ := φ̂ ◦ ισ. This shows the following

Proposition 55. There is a simple morphism φ : G(Q) → G which is injective on

the local groups if and only if ι : G(Q) → Ĝ(Q) is injective on the local groups.

In other words, G(Q) is developable if and only if the homomorphismsGσ → Ĝ(Q)
are injective. For this reason we sometimes use the following terminology.

Definition 56. If Q is the poset of cells of a cell complex Y , then with the notations
above, we let D̂ = D̂(G(Q)) := D(Y, ι), which we sometimes refer to as the universal
development.8

7Note: this is not the same as the usual definition over a directed set! Instead, it’s the free

product quotiented by the equivalence relation a ∼ b iff b = ψτσ(a) for some τ < σ.
8This terminology is non-standard, but we may refer to this by name later and this doesn’t

have a usual name in the literature.
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The reason for this naming is as follows:

Proposition 57. If Y is a connected, simply connected cell complex and Q is
its poset of cells, then D̂(G(Q)) is connected and simply connected. Moreover, if
φ : G(Q) → G is a morphism which is injective on the local groups and the canonical

homomorphism φ̂ : Ĝ(Q) → G is surjective, then π1(D(Y, φ)) ∼= ker(φ̂).

So we can think of D̂ as the “universal covering” of the development in a pretty
literal sense.

To tie this together, let’s give an example of how to rephrase the above results in
order to say something useful about a very general situation.

Corollary 58. Let G be a group acting on a simply connected cell complex X with
strict fundamental domain Y . Then G is the direct limit of the isotropy subgroups
of the cells of Y along its poset of cells.

8.2. The Complex of Groups W (S). Let’s venture back to Coxeter land with
what we’ve learned (and to provide another prominent example of a complex of
groups). When W is finite, we defined a simplicial complex C(W,S) in terms of the
chambers of the action of W on Sn, and we distinguished a fundamental chamber C.
In fact, we have the following classical result:

Proposition 59. C is a strict fundamental domain for the action of W on C(W,S).

Proof. We’ll present an outline of the proof, since some of it requires classical
material on Coxeter groups that we haven’t covered.

In order to show the Proposition, it suffices to show thatW acts simply transitively
on the set of all chambers. To this end, let Ω be the simplicial graph whose set of
vertices is the set of chambers, with two vertices connected by an edge if and only if
they’re adjacent9. Note that Ω must be connected. Moreover, by the definition of
Ω, two vertices are joined by an edge if and only if the corresponding chambers are
adjacent; in other words, if and only if the intersection of the chambers is contained
in a wall V r. This means if A,B are two vertices, there is a unique reflection r ∈ R
swapping them. Hence W acts transitively on the vertices of Ω. This shows C is a
fundamental domain.

To see this fundamental domain is strict, we need to show that for all w ∈W , if
wx = y then x = y. We do this by induction on the word length k = ℓS(w) of w.

The case k = 0 is trivial (w = 1). Suppose k ≥ 1. Let A be a chamber containing
x. Then there is a wall V r of A so that w = rw′ with ℓS(w

′) = ℓS(w) − 1. In
particular, A and wA lie on opposite sides of V r. Hence we must have y, x ∈ V r,
and y = ry = r(wx) = r2w′x = w′x. By inductive hypothesis, y = x. □

Thus the action of W on C(W,S) gives us a simple complex of groups, which we
denote by W (Sop

<S) (this notation will become more clear later). We can explicitly
determine the data of the complex of groups by examining the isotropy subgroups
of the fundamental chamber.

Previously, our fundamental chamber was arbitrary, but now we make a canonical
choice of chamber: there is a unique chamber C of C(W,S) whose walls are precisely
V s for s ∈ S; this chamber is the intersection of Sn with the half-spaces

{x1e1 + · · ·+ xn+1en+1 : xi ≥ 0 } ,

9They intersect in a common codimension-1 facet.
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where the ei are the basis vectors from the canonical representation (i.e., the −1
eigenvectors of the reflections in S). In particular, there is an order-reversing
isomorphism between the facets of the chamber and the proper10 subsets of S, the
latter of which we will denote S<S . In other words, Sop

<S is the poset of cells of C.
Now, one could build a complex of groups from this action, but it turns out for our
purposes to be more beneficial to look at Σ instead.

As mentioned a while ago, ∂Σ is the dual of C (when W is finite). Since C
is a strict fundamental domain for W

⟲
C, it follows that L := C ∩ Σ is a strict

fundamental domain for W
⟲
∂Σ. Since Σ is the cone on its boundary, it follows

that the cone K on L is a strict fundamental domain for W
⟲
Σ. Note that K is not

a subcomplex of the cell structure we’ve put on Σ, it’s just a subspace. However, it
is a subcomplex of the barycentric subdivision bΣ: since ∂Σ and C are dual, they
have the same barycentric subdivision, and thus L, the intersection of b∂Σ with C,
is a subcomplex of this subdivision b∂Σ. It follows that K is a subcomplex of bΣ.
Later we will endow K with a cell structure inherited from the natural one on Σ.
First, we need to describe K combinatorially.

The poset of cells of C is Sop
<S . Thus its barycentric subdivision is bC = |(Sop

<S)
′|.

Since ∂Σ is dual to C it follows that the cells of b∂Σ corresponding to those of bC
are L = |(S<S)

′|. The cone point comes from adding S back in, thus

K = |S ′|.

In other words, we want to build our complex of groups over S.
First, we need to examine the structure of the local groups. Since ∂Σ and C have

a common barycentric subdivision, the cell structure of bΣ comes (in part) from
the hyperplanes V r. In particular, the stabilizer of a vertex x of K is based on the
collection T (x) of t ∈ S such that

x ∈ V t.

(In fact, these hyperplanes completely determine x, as it’s the unique vertex of K
contained in their intersection.) Namely, the stabilizer of x is the reflection group
generated by the orthogonal reflections about the hyperplanes V t for t ∈ T (x).
Since this is a finite geometric reflection group, we know it’s a Coxeter group, and
we denote this by WT . It’s easy to verify that the stabilizer has presentation

WT := ⟨ T | (titj)mij = 1 ⟩, (2)

where the mij are the same as those which define W . (Note: this is not a subgroup
of W yet!) So, for T ∈ S, we declare the local group to be WT , as defined above.
The maps ψUT are just the homomorphisms induced by the inclusions U ⊆ T . This
data defines our complex of groups W (S) with development bΣ(W,S). Note that
we have the following as a consequence of Corollary 50:

Proposition 60. Let M = (mij) be a Coxeter matrix and (W,S) the associated
Coxeter system. Moreover, suppose W is finite. Let T ⊆ S, and let

WT := ⟨ T | (titj)mij = 1 ⟩. (3)

Then the homomorphism WT →W induced by the inclusion T ⊆ S is injective.

10S isn’t included because W acts freely on the sphere when it’s finite. ∅ is included because
this is the stabilizer of a top-dimensional cell.
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(Note that this is actually a priori non-obvious.)
There’s a nice way to describe the development combinatorially based on these

definitions; at the risk of using confusing notation, we let

WS =
⋃
T∈S

W/WT = {wWT : w ∈W,T ∈ S } .

One can verify that WS is order-isomorphic to the set of cells of Σ(W,S) and thus
|(WS)′| is isomorphic to bΣ(W,S).

If you notice, there’s really nothing stopping us from making these exact definitions
on the complex-of-groups side work when W is infinite, or even for Artin groups.
So, let’s see what happens.

Definition 61. Suppose (G,S) is an arbitrary Coxeter or Artin system. For T ⊆ S,
let GT be defined as in (3) if G is a Coxeter group, or the corresponding presentation
if G is an Artin group. Then, let

S = {T ⊆ S :WT is finite } .
(We’ll later see why we want these to be finite, and why we always want it based
on whether the Coxeter group is finite.) Then, we define a complex of groups G(S)
whose local groups are GT for T ∈ S, and whose morphisms ψUT are the morphisms
induced by the inclusions U ⊆ T . (These are injections by Proposition 60.)

However, now we come to an issue—is this complex of groups developable? In
the finite case, W (S) was developable by definition, since it arose from the action
of W on the Coxeter polytope Σ. But for an arbitrary Coxeter or Artin group,
we don’t necessarily have a nice action on a space like this11. We have one way
to determine if a complex of groups is developable so far, which is to construct a
morphism which is injective on the local groups. However, a priori, we don’t know
if WT injects into W ! It turns out there’s another way to show a complex of groups
is developable using the notions of non-positive curvature we discussed previously.

9. Curvature for Complexes of Groups

We now want to introduce the notion of “curvature ≤ κ” for a complex of groups,
in a similar vein to metric spaces. One might think that a good notion would be to
just require that the development support a metric with curvature ≤ κ, but we want
to define this notion for complexes of groups which are a priori not developable,
so we need to do a bit more work. First, we’ll need some more generalities about
polyhedral complexes.

Definition 62. Let K be an Mκ-polyhedral complex. Fix x ∈ K. The open star
of x in K, denoted st(x), is the union of the interiors of all cells of K containing
X (equiv,. the complement of the largest subcomplex of X not containing x). The
closed star St(x) is the smallest subcomplex of K containing st(x).

The link of x in K, denoted Lk(x,K) is the “space of directions” at x endowed
with the subspace metric. More explicitly, let ε(x) denote the distance from x to
the boundary ∂st(x) of the open star of x. Then the link Lk(x,K) is (isometric
to) the sphere centered at x of radius ε(x)/2. The link inherits a polyhedral cell
structure from the intersection of the sphere with the cell structure of K.

11Actually, the dual of the canonical representation for an arbitrary Coxeter group gives us an

action with a strict fundamental domain, but for the sake of illustration, we’re going to use an

alternate approach, since this still doesn’t work for Artin groups.
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These are both immensely useful notions, as we will see soon.

9.1. The local development. It turns out that developability is actually a global
condition; there is a “local development” associated to any complex of groups.
To be more precise, one can construct what would be the star of a point in the
development, if the complex were developable.

Definition 63. Let P be a poset, and G(P) a simple complex of groups over
P. Let σ ∈ P. Define G(P<σ) to be the restriction of G(P) to the subposet
P<σ := { ρ ∈ P : ρ < σ }. There is a canonical simple morphism ψσ : G(P<σ) → Gσ

given by (ψσ)ρ = ψρσ : Gρ → Gσ. In particular, ψσ is injective on the local groups,
so G(P<σ) is developable, with development D = D(P<σ, ψσ). Sometimes, D = Lkσ
is called the lower link of σ. We then define

St(σ) = |P≥σ ∗D|,
st(σ) = int(St(σ)).

Sometimes, P≥σ = St(σ,P) is called the combinatorial star of σ. This St(σ) is
called the local development of G(P) at the vertex σ.

Note that there is a natural action of Gσ on St(σ) (i.e., the usual action on D
and the trivial action on P≥σ), and it has strict fundamental domain St(σ,P). This
gives us the information for a developable complex of groups, which we sometimes
call G(σ).

We can now define the correct notion of curvature:

Definition 64. Let κ ∈ R. Let Q be a poset such that |Q′| is an Mκ-polyhedral
complex, and let G(Q) be a simple complex of groups over Q. Then G(Q) is said
to be of curvature ≤ κ if the induced metric on the open star st(σ) of σ in the local
development St(σ) is of curvature ≤ κ for each σ ∈ Q.

Now, we have

Theorem 65. Let Q be a poset such that ∆ := |Q′| is simply connected. Let G(Q)
be a simple complex of groups over Q. Suppose κ ≤ 0. If ∆ supports a metric which
makes it an Mκ-polyhedral complex with Shapes(∆) finite and G(Q) has curvature
≤ κ, then G(Q) is strictly developable.

The proof of this is well outside the scope of these notes. If you’re interested, it’s
covered in detail in BH Ch III.G.

So now all we have to do to check developability is to verify that the open stars
are CAT(0)! But. . . we still don’t have a very easy way to check if a space is CAT(0).
So let’s fix that!!

10. Curvature for Mκ-polyhedral complexes

We’re going to go through a series of lemmas which will culminate in really nice
characterizations of curvature ≤ κ for Mκ-polyhedral complexes. The main ideas
mostly hinge on the following definition.

Definition 66. An Mκ-polyhedral complex K satisfies the link condition if for
every vertex v ∈ K, the link Lk(v,K) is a CAT(1) space.

Before we continue, we need a technical result, which, while important, has a
very long and unenlightening proof, so we’ll skip it.
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Theorem 67 (BH Ch. II, Th 3.14). Let Y be a metric space. Then Y is CAT(1)
if and only if the κ-cone12 CκY is CAT(κ).

Our first important theorem is the following.

Theorem 68. An Mκ-polyhedral complex K with Shapes(K) finite has curvature
≤ κ if and only if it satisfies the link condition.

Proof. Let v ∈ K be a vertex. Recall that the link of v is the ε(v)-sphere centered
at v, so the ε(v)-ball is the cone on Lk(v,K). In fact, it’s isometric to the κ-cone
CκL(v,K) of the link (this follows from the definition of the metric on the κ-cone).
Thus K satisfies the link condition if and only if each vertex has a neighborhood
which is a CAT(κ) space. To finish the proof, use the following exercise. □

Exercise 69. For any x ∈ K, if v is a vertex of supp(x) and η > 0 is sufficiently
small, then B(x, η) is isometric to B(x′, η) for some x′ ∈ B(v, ε(v)).

So this theorem applied to the complex of groups setting gives us

Corollary 70. Let κ ∈ R. Let Q be a poset such that |Q′| is an Mκ-polyhedral
complex, and let G(Q) be a simple complex of groups over Q. Then G(Q) is of
curvature ≤ κ if and only if the link of σ in the open star st(σ) is CAT(1).

We didn’t describe it before but it turns out this link has a nice description: it’s
actually just |P<σ ∗ Lkσ| (see previous chapter for the terminology). So showing a
complex of groups is nonpositively curved amounts to putting a CAT(1) metric on
that complex. Although checking that a complex is CAT(1) is still no easy feat, it
turns out that we can do this inductively, in a way. Namely, we have the following

Theorem 71 (BH Ch II Thm 5.4). Let K be an Mκ-polyhedral complex with
Shapes(K) finite. If κ ≤ 0 then TFAE

(1) K is CAT(κ),
(2) K is uniquely geodesic,
(3) K satisfies the link condition and contains no isometrically embedded circles,

and
(4) K satisfies the link condition and is simply connected.

If κ > 0, then TFAE

(1) K is CAT(κ),
(2) K is (π/

√
κ)-uniquely geodesic, and

(3) K satisfies the link condition and contains no isometrically embedded circles
of length less than 2π/

√
κ.

In both cases, (1) ⇐⇒ (3) follows from our Theorem 68 and from Proposition
4.17 in [BH Ch. II]. We won’t show the other directions since this is basically all
we need in our settings. (Sometimes we’ll use (4) =⇒ (3) but the proof isn’t very
enlightening, so we’ll skip it.)

So, in order to verify an arbitrary Mκ-polyhedral complex (with Shapes finite)
is CAT(κ), it suffices to check that the links of the vertices are CAT(1), which we
can do by verifying there are no “small circles”, then checking that the links of the
vertices in the link are CAT(1), and so on. While this is much easier than verifying
the space is CAT(κ) by definition, in practice it could still be very hard. This is
where the works of Gromov and Moussong come in.

12This is just the cone on Y with a special metric defined in Ch I.5, Definition 5.6 of BH
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11. Combinatorial tools

The beauty of the following ideas come from the fact that they provide an
(almost) exclusively combinatorial criteria for an Mκ-polyhedral complex to be
CAT(κ). While they aren’t 100% applicable all the time, they will see great use in
our specific examples. Since they’re combinatorial in nature, in order to explain the
conditions, we’ll again need more terminology.

Definition 72. Let L be a simplicial complex. We call L a flag complex (or “clique
complex”, or say “L satisfies the no-∆ condition”) if for every finite set S of vertices
of L, if the elements of S are pairwise joined by edges, then S spans a simplex of L.

Example 73. A circuit with 3 edges is not a flag complex, but a 2-simplex is (in
fact any simplex is). Any simplicial graph is a flag complex if and only if all circuits
have length ≥ 4.

There are two criteria we will discuss. The first, by Gromov, is more rigid, but
has a beautiful application, which has seen widespread use in real-world subjects
such as A.I. training and robot movement13.

Definition 74. An M1-polyhedral complex whose cells are all (isomorphic to)
simplices will be called a spherical simplicial complex. A spherical simplicial complex
is called all-right if each edge has length π/2.

Theorem 75. Let L be a finite dimensional all-right spherical simplicial complex.
Then L is CAT(1) if and only if it’s a flag complex.

tk fill in proof!!
The great corollary is thus:

Corollary 76 (Gromov’s Link Condition). A finite dimensional cubed complex14 is
non-positively curved if and only if the link of each of its vertices is a flag complex.

Proof. We showed that an M0-polyhedral complex has non-positive curvature if and
only if each vertex link is CAT(1). But in a cubed complex, the vertex links are
all-right simplicial complexes. □

This is a great criteria, but really only useful for cube complexes (which isn’t
a bad thing of course, but lacks some generality we need). Thankfully, Moussong
proved a wonderful generalization of this Theorem in his thesis [tk cite].

Definition 77. A spherical simplicial complex L is called a metric flag complex if
every set V = {v0, . . . , vk} of vertices of L which is pairwise joined by an edge eij
and there is a spherical k-simplex in Sk whose edge lengths are equal to the edge
lengths ℓ(eij), then V spans a k-simplex of L.

Lemma 78 (Moussong’s Lemma). Suppose L is a spherical simplicial complex
whose edges have length at least π/2. Then L is CAT(1) if and only if it’s a metric
flag complex.

This lemma follows from the following lemma.

13Don’t ask me why, no clue
14An M0-polyhedral complex whose cells are all isomorphic to Euclidean cubes
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Lemma 79 (Bowditch’s Lemma, tk cite). Let X be a compact metric space of
curvature ≤ 1. Suppose that every nonconstant closed rectifiable curve of length
< 2π is homotopically trivial through a homotopy which strictly decreases the length
of the curves in the family. [tk wording] Then X is CAT(1).

This proof is unfortunately outside the scope of these notes. I’m told it uses the
Birkoff curve-shortening process(?).

tk fill in proof of moussong

12. Σ is CAT(0)

After all this build up, we finally show that Σ(W,S) is developable for an arbitrary
Coxeter system (W,S), which as we’ve discussed amounts to putting a CAT(1) metric
on the link of the local development. We establish a chain of lemmas to do this.
First, we need to describe the cell structure on K = |S ′| which gives the domain
nonpositive curvature.

First, suppose (W,S) is a finite Coxeter system. We endow K = K(W,S) = |S ′|
with a natural cell structure from Σ and C. Since Σ is the cone on ∂Σ, we consider
the cone on C. The set of cells of C is Sop

<S , so the set of cells on the cone of C is Sop.
Since Σ is dual to C, it follows that the cells of Σ which are dual to (the cone on)
C are indexed by S. Now since K is the intersection of the cone on C and Σ, each
face of K is an intersection of a cell of C with a cell of Σ. We are able to explicitly
describe these faces combinatorially as follows.

Note that if P is the poset of cells of a cell complex X ordered by inclusion, then
for any a ∈ P, the set P≤a combinatorially represents the cell structure on a, as it
includes all the cells of X which are subsets of a. Thus the faces of K are

FT1,T2
:= S≤T1

∩ Sop
≤T2

For T1 ∈ S, T2 ∈ Sop. But since the second just has the order reversed, we can
more simply write this as

FT1,T2 = S≤T1 ∩ S≥T2

for T1, T2 ∈ S. To summarize, the vertices of K are the elements T ∈ S, and a set
V of vertices span a cell of K if and only if V = S≤T1 ∩ S≥T2 for some T1, T2 ∈ S.

Proposition 80. The cells of K are combinatorial cubes. Viewed as a subspace of
Σ with the induced metric, this makes K into an M0-polyhedral complex.

Proof. Exercise. □

We now consider the correct metric and cell structure on K when (W,S) is
arbitrary.

Definition 81 (The metric on K). Let (W,S) be any Coxeter system, and let
K = |S ′|, where

S = {T ⊆ S :WT is finite } .

For T1 ⊆ T2 ∈ S, let

FT1,T2
= S≥T1

∩ S≤T2
.

The cell structure and metric on K is as follows:

(1) The vertices of K are the elements of S.
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(2) A set V of vertices of K span a cell if and only if they’re equal to FT1,T2
for

some T1 ⊆ T2 ∈ S.
(3) We endow the cell corresponding to FT1,T2 with the Euclidean metric de-

scribed above for K(WT , T ) ⊆ Σ(WT , T ).

Lemma 82. The metric on K is well-defined.

Proof. Exercise. □

Lemma 83. Let v be a vertex of K, say corresponding to T ∈ S. Then under this
cell structure, the link Lk(v, st(v)) in the local development of W (S) is isomorphic
to |S ′

>T | ∗ C(WT , T ). (The ∗ means the spherical join of the complexes as defined
in BH Ch I.5 Def 5.13.)

We’ll provide the main argument of the proof, but the details should be verified
by the reader to better understand what’s going on.

Proof. The star St(v) is by definition the join of the upper star |S ′
T≥| and lower

link Lkv(S) as defined previously. Under the cubical structure, the cells containing
v are thus

gFT1,T2
= S≤T2

∩ gS≥T1

where T1 ⊆ T ⊆ T2 ∈ S and g ∈WT (check!). But the decomposition of the star as
a join means we can decompose these cells as a Cartesian product, namely,

gFT1,T2
S≤T2

∩ gS≥T1

= (S≤T2 ∩ S≥T )× (gS≥T1 ∩ S≤T )

= FT,T2 × gFT1,T .

The set of FT,T2 for T2 ∈ S and T ⊆ T2 is naturally identified with S≥T , while the
set of FT1,T with T1 ⊆ T is naturally isomorphic to Sop

≤T (check!). Then passing to

the link, the cartesian product becomes a join15, and we see that we’re restricted
to T2 ⫌ T and T1 ⫋ T , so these become S>T and Sop

<T . Since T is spherical, the
development of Sop

<T is naturally identified with C(WT , T ) with the usual metric. □

Lemma 84. If T ⊆ S is finite, then C(WT , T ) is CAT(1).

Proof. If T is finite, then C(WT , T ) is a simplicial decomposition of the |T |-sphere,
hence CAT(1). □

Since the join of two CAT(1) spaces is again CAT(1), it remains to show that
the upper link is CAT(1).

Lemma 85. With the metric and cell structure induced from K, the upper link
|S ′

>T | has the following metric:

Lemma 86. Let v0 = [∅] be the vertex corresponding to the trivial subset of S.
Then Lk(v, st(v)) is CAT(1).

Proof. By Lemma 83, Lk(v, st(v)) is isomorphic to K0 := |S ′
>∅|. Let σT = |S>∅ ∩

S≤T |. Each simplex of Lk(v, st(v)) is contained in some σT for T ∈ S. (Check!)
The piecewise spherical structure on K0 induced from the metric on K assigns each
simplex σT the dihedral angles − cos(π/mij). □

15Exercise: make this rigorous.
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The following

Lemma 87. Lk(v, st(v)) has edge lengths ≥ π/2.

tk include proof

Lemma 88. Lk(v, st(v)) is a metric flag complex, hence CAT(1).

tk include proof

Corollary 89. st(v) is CAT(0), hence W (S) is developable, and the development
Σ(W,S) is CAT(0).

13. The Cartan-Hadamard Theorem

The main purpose of this section is to prove the following wonderful theorem (cf.
non-positively curved Riemannian manifolds).

Theorem 90 (Cartan-Hadamard). Let X be a complete connected non-positively

curved metric space of curvature ≤ κ, where κ ≤ 0. Then the universal cover X̃ of
X is CAT(κ).
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CAT(κ) spaces: the model spaces Mκ, CAT(κ) polyhedral complexes (including
CAT(0) cube complexes), the link condition.

Complexes of groups: simple complexes of groups, the local development, global
developability, the universal and fundamental groups, metrics of nonpositive curva-
ture.

Coxeter groups: spherical (finite) linear reflection groups, the Davis-Moussong
complex Σ for infinite Coxeter groups, the CAT(0) metric on Σ.

Artin groups: hyperplane arrangements, spherical-type Artin groups, the Deligne
complex Φ for infinite-type Artin groups, right-angled Artin groups (including special
cube complexes), type FC Artin groups and metrics on Φ, the K(π, 1) conjecture.
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