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Abstract. In this note we connect the language of Bessis’s Garisde categories

with Salvetti’s metrical-hemisphere complexes in order to find new examples of
weak Garside groups. As our main example, we show that the fundamental

group of the (appropriately defined) complexified complement of a pseudo-

hyperplane arrangement is a weak Garside group. As a consequence of the
Folkman-Lawrence topological realization theorem, we also show that the fun-

damental group of the Salvetti complex of a (“simplicial”) oriented matroid is
a weak Garside group. This provides novel examples of weak Garside groups.

Weak Garside groups were formalized by Bessis in [Bes06]. A traditional Garside
group is a group endowed with a certain combinatorial structure which provides
fruitful information about the group. The structure on a Garside group generalizes
readily to groupoids, giving Bessis’s Garside groupoids. A weak Garside group is a
group which is equivalent (as a category) to a Garside groupoid1. In general, weak
Garside groups may not be Garside groups, but the weak Garside property has
shown to be rather fruitful on its own. Many results for Garside groups can be
easily extended to weak Garside groups, and some recent work has been done to
study weak Garside groups in their own right. Some notable properties for a group
G which is a finite-type (weak) Garside group include

(1) The word problem for G is solvable [DP99].
(2) G is biautomatic [DP99]; in particular, the k-th order homological Dehn

function and homotopical Dehn function of G are Euclidean [Wen05,BD19].
(3) G has a finite K(G, 1) [Bes06]; in particular, G is torsion-free.
(4) G is Helly [HO21]; in particular, this implies

• G admits a geometric action on an injective metric space,
• G admits an EZ-boundary and a Tits boundary,
• The Farrell-Jones conjecture with finite wreath products holds for G,

and
• The coarse Baum-Connes conjecture holds for G.

Primary examples of (weak) Garside groups come from complements of complex
hyperplane arrangements. A complex hyperplane arrangement is a finite collection
H of linear hyperplanes (i.e., codimension-1 linear subspaces) in Cn. We denote the
complement of this collection by

M(H) = Cn \
⋃

H∈H
H.

There are two beautiful results concerning when π1(M(H)) is a weak Garside
group. The first, by Deligne [Del72], considers the following class: suppose H is

1We clarify that a “weak Garside group” is not the same as a “quasi Garside group”. A quasi
Garside group may be thought of as an “infinite-type” Garside group.
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a finite collection of real linear hyperplanes (i.e., codimension-1 linear subspaces
of Rn). We call a connected component of Rn \

⋃
H∈HH a chamber, and we call

H simplicial if each chamber is a simplicial cone (i.e., the R+-span of a simplex).
Let HC = {HC : H ∈ H}, where HC denotes the complexification of the linear
space H. Then if H is simplicial, π1(M(HC)) is a weak Garside group [Del72]. The
prototypical example of a Garside group arising in this way is a braid group on
n-strands [Gar69], or, more generally, the spherical-type Artin groups [BS72] (of
which the braid groups are examples).

The second major example comes from Bessis, who in [Bes15] proved the following.
Suppose H is the set of reflection hyperplanes for a well-generated complex reflection
group. (A well-generated complex reflection group is a finite subgroup of GLn(C)
generated by exactly n complex reflections; complex reflections are finite-order linear
transformations of Cn fixing a hyperplane.) Then π1(M(H)) is a weak Garside
group [Bes15].

One may ask if the assumption that the hyperplanes are linear in the previous
examples may be dropped. That is, are there similar results for finite collections of
submanifolds which are simply complex codimension-1 and intersect at the origin?
While it is certainly unfeasable to expect this to be true of any arbitrary submanifolds,
if we restrict ourselves to a certain class of submanifolds, called pseudohyperplanes,
we show that the answer is yes; i.e., the fundamental group of the complement of
a simplicial pseudohyperplane arrangement is a weak Garside group. We give the
precise statements now.

These definitions are based on those found in [Man82]. Consider an embedding
Sd−1 ↪→ Sd with image S. The subspace S ⊆ Sd is called a pseudosphere if the
components of Sd \ S are homeomorphic to the unit ball in Rd. In this case, the
components of Sd \ S are called the (open) halfspaces of S. (One can verify that
there are always two such components.) Let A = {Si}i∈I be a finite collection of
pseudospheres of Sd. For J ⊆ I, let SJ =

⋂
j∈J Sj . We call A an arrangement of

pseudospheres (in Sd) if for each J ⊆ I and k ∈ I satisfying SJ ̸⊂ Sk, we have that
SJ ∩ Sk is a pseudosphere in SJ with halfspaces coming from the intersection of SJ

with the halfspaces of Sk. (Compare to the intersection of a hyperplane arrangement
with the unit sphere.) If A is a pseudosphere arrangement, then the cone

cA = { cS : S ∈ A}

is called a pseudohyperplane arrangement. (The cone cS on a pseudosphere S is the
set cS = {αx : α ∈ [0,∞), x ∈ S }.) To a pseudohyperplane arrangement, one can
associate a natural “complexified complement” (even though these are not linear
subspaces) by

M(cA) = Cn \
⋃

H∈cA
(H + iH),

where H + iH = {h1 + ih2 : hi ∈ H }. One of our main results (part of Theorem
33) is as follows (comparable to [Del72]).

Theorem. If cA is a centrally symmetric simplicial pseudohyperplane arrangement,
then π1(M(cA)) is a weak Garside group.

In particular, this positively answers a question of Deshpande regarding the bi-
automaticity of such groups [Des16, p. 419], as well as showing that they possesses
the other properties of weak Garside groups given above.
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Figure 1. The non-Pappus arrangement, from [Des16, Fig. 1]

We note that there are many pseudohyperplane arrangements which are not
realizable as hyperplane arrangements. A famous example is the non-Pappus
arrangement seen in Figure 1.

Other examples come from pseudoline arrangements in RP2 [Grü67, Ch. 2]; these
are finite collections of simple closed curves in RP2 such that every two curves
intersect (transversely) in exactly one point. By lifting to S2 and taking cones, we
have a non-realizable arrangement of pseudoplanes in R3. There are (at least) seven
infinite families of simplicial pseudoline arrangements [Grü67, Ch. 3].

We also note that as a consequence of [DF17], there exist pseudohyperplane
arrangement complements whose fundamental groups are not isomorphic to the
fundamental group of any hyperplane arrangement complement. Although, this
is explicitly demonstrated using the above non-Pappus arrangement, which is not
simplicial. We believe that there exist such simplicial examples, but have not yet
been able to find any in the literature.

The famous Folkman-Lawrence topological realization theorem gives a 1-1 cor-
respondence between pseudohyperplane arrangements2 and oriented matroids (see
Proposition 35). Oriented matroids are common combinatorial objects which have
broad uses in mathematics, and in particular capture the combinatorics of pseudo-
hyperplane arrangements. For a given oriented matroid M, there is an associated
simplicial complex, called the Salvetti complex Sal(M) [Zie87, §5.5]. This complex
turns out to be homotopy equivalent to M(cA) for cA the pseudohyperplane ar-
rangement associated to M [Des16, Thm. 2.30]. In Section 3, we utilize this deep
connection of pseudohyperplane arrangements with oriented matroids to show the
following (Theorem 36).

Theorem. If M is a “simplicial” oriented matroid, then π1(Sal(M)) is a weak
Garside group.

Our main technical tool, defined in Section 1.2, are the metrical-hemisphere
complexes introduced by Salvetti in [Sal93]. These complexes act as a basis for
generalizing the construction of the “Salvetti complex” of a hyperplane arrangement
to the pseudosphere/pseudohyperplane arrangements. It is shown in [Des16] that,
analagous to the hyperplane case, the Salvetti complex of a pseudohyperplane
arrangement is homotopic to its complexified complement. We may thus adapt

2Originally shown for “pseudohemisphere arrangements” in [FL78], stated and proven in terms
of pseudosphere/pseudohyperplane arrangements in [Man82]



4 KATHERINE GOLDMAN

many of the arguments involving the Salvetti complex of a hyperplane arrangement
to those of pseudohyperplane arrangements—and in fact, our arguments may be
applied to the Salvetti complex of any (suitable) metrical-hemisphere complex. This
is the content of Section 2. See Theorem 14 and Corollary 24 for the full statement
of our most general results.

The paper is structured as follows. In Section 1, we provide the relevant back-
ground information regarding Garside categories and metrical hemisphere complexes.
In Section 2, we show that the Salvetti complex of appropriate metrical hemisphere
complexes gives rise to a natural categorical Garside structure, and the isotropy
group of this Garside structure is isomorphic to the fundamental group of the
Salvetti complex. In Section 3, we apply this result to simplicial pseudohyperplane
arrangements and (simplicial) oriented matroids.

1. Background

1.1. Garside categories. The material in this section originally comes from [Bes06],
but our statements are primarily adapted from [HH22]. We recall some notions from
basic category theory first, mainly to establish notation. Throughout this paper, we
assume all categories are small.

Let C be a (small) category. The set of objects of C is denoted Obj(C) and the
set of morphisms is denoted Hom(C). We denote the identity functor of C by 1C.
For x, y ∈ Obj(C), let Cx→ denote the set of morphisms starting at x, C→y the set of
morphisms ending at y, and Cx→y the set of morphisms from x to y. If f ∈ Cx→y, we

sometimes write x
f−→ y. If x

f−→ y
g−→ z then the composition of f and g is x

fg−→ z
(so we adopt the “path” style of the order of composition rather than the “function”
style).

We recall that a natural transformation τ between functors F,G : C → D,
which we denote by τ : F → G, is a mapping from Obj(C) to Hom(D) which for

x, y ∈ Obj(C) and x f−→ y satisfies

(1) F (x)
τ(x)−−−→ G(x), and

(2) F (f)τ(y) = τ(x)G(f).

For f, g ∈ Hom(C), we write f ≼ g if there is an h ∈ Hom(C) such that g = fh.
We write g ≽ f if there is an h ∈ Hom(C) such that g = hf . A nontrivial f ∈ Hom(C)
which cannot be factored into two nontrivial factors is called an atom.

The category C is cancellative if for a, b, f, g ∈ Hom(C), afb = agb implies
f = g. It is homogeneous if there is a function ℓ : Hom(C) → Z≥0 such that
ℓ(fg) = ℓ(f) + ℓ(g), and ℓ(f) = 0 if and only if f is trivial. Note that if C is
homogeneous, then (Cx→,≼) and (C→y,≽) are posets.

Definition 1. A Garside category is a homogeneous cancellative category C equipped
with an automorphism ϕ : C → C and a natural transformation ∆ : 1C → ϕ satisfying
the following properties.

(1) For all x, y ∈ Obj(C), the posets (Cx→,≼) and (C→y,≽) are lattices.

(2) All atoms in Hom(C) are simple (x
f−→ y is simple if there exists an y

f∗

−→ ϕ(x)
so that ff∗ = ∆(x)).

Sometimes for x ∈ Obj(C), we write ∆x = ∆(x) and ∆x = ∆(ϕ−1(x)). If x is clear
from context, we may write ∆ = ∆x. If the set of simple morphisms is finite, we
call C finite type.
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Associated to a Garside category C is a groupoid G into which C embeds, obtained
by adding formal inverses to all morphisms in C. We call such a G a Garside groupoid.
For x ∈ Obj(G), we sometimes write Gx for Gx→x, and call Gx the isotropy group at
x. A weak Garside group is a group which is isomorphic to the isotropy group of
some object of a Garside groupoid. A Garside group is a Garside groupoid with
one object. A Garside monoid is a Garside category with one object. Each of these
objects will be called finite type if the corresponding Garside category is finite type.

1.2. Metrical Hemisphere Complexes. The following comes from [Sal93].
Let Q be a connected cell complex with poset of (closed) cells Q. For a cell e ∈ Q,

let Q(e) denote the set of cells of Q contained in e and let V (e) denote the vertices
of e. The set of i-cells of Q is denoted Q(i) and the i-skeleton of Q is denoted Q(i).
Note that Q(i) is the union of the cells of Q(i). For vertices v, w of Q, we let d(v, w)
denote the distance between v and w in Q(1) with each edge given length 1 (so
d(v, w) is the combinatorial length of the shortest edge path from v to w).

Definition 2. A regular cell complex Q is quasi-metrical-hemisphere (QMH) if
there exist maps w,w : Q(0) ×Q → Q(0) such that

(i) For each cell e, the functions w(·, e) and w(·, e) are maps from Q(0) to V (e),
(ii) The vertices w(v, e) and w(v, e) are the unique vertices of e satisfying

d(v, w(v, e)) = min
w∈V (e)

d(v, w) and d(v, w(v, e)) = max
w∈V (e)

d(v, w),

and
(iii) For all vertices v and cells e of Q, and all cells e′ ∈ Q(e),

w(v, e′) = w(w(v, e), e′) = w(w(v, e), e′), and (A)

w(v, e′) = w(w(v, e), e′) = w(w(v, e), e′). (B)

Proposition 3. If Q is a regular cell complex satisfying (i) and (ii) above, then
(iii) (i.e., (A) and (B) together) is equivalent to

d(v, w(v, e)) = d(v, w) + d(w,w(v, e))

for all v ∈ Q(0), e ∈ Q, and w ∈ V (e). Moreover, if Q is QMH, then

d(v, w) = d(v, w(v, e)) + d(w(v, e), w)

for all v ∈ Q(0), e ∈ Q, and w ∈ V (e).

Definition 4. A regular cell complex Q is local-metrical-hemisphere (LMH) if every
cell e ∈ Q (viewed as a subspace of Q) is QMH, with respective functions denoted
we and we, such that the following compatibility condition holds: If f ∈ Q(e)∩Q(e′)
and v ∈ V (e) ∩ V (e′), then

we(v, f) = we′(v, f) and we(v, f) = we′(v, f)

There are QMH complexes which are not LMH complexes; see Figure 2 for an
example.

Definition 5. A regular cell complex Q is metrical-hemisphere (MH) if it is both
QMH and LMH, and for all e ∈ Q, e′ ∈ Q(e), and v ∈ V (e), we have

w(v, e′) = we(v, e
′), and w(v, e′) = we(v, e

′).
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Figure 2. A complex
which is QMH but not
LMH [Sal93, Fig. 2a]

Figure 3. A complex
which is QMH and LMH
but not MH [Sal93,
Fig. 2b]

There are complexes which are both QMH and LMH but not MH. See Figure 3
for an example. (The gray portion is a 2-cell.) Important examples of MH complexes
come from hyperplane arrangements. This is explained in more detail in Section 3.

To a QMH or LMH complex Q there is a regular cell complex X = Sal(Q), which
we call the Salvetti complex of Q built in the following way.

Set X(0) = Q(0). For each edge e of Q with vertices v1, v2, attach two 1-cells
⟨e; v1⟩, ⟨e; v2⟩ to v1, v2 in X (so that ∂⟨e; vi⟩ = {v1, v2}). We choose an orientation
on ⟨e, vi⟩ so that vi is the source of this edge. This fully describes the 1-skeleton of
X as an oriented graph.

The i-skeleton is constructed by induction. Suppose we have already constructed
the j-skeleton of X for 1 ≤ j ≤ i − 1. A cell of X(j) will be denoted by ⟨e; v⟩
for e ∈ Q(j) and v ∈ Q(e). Then for each i-cell e of Q and v ∈ V (e), let ϕ(v, e) :
Q(e) \ {e} → X(i−1) be the map taking a cell e′ of ∂e to ⟨e′, w(v, e′)⟩. By the
definition of a QMH complex (specifically, (A) and (B)), we have that

∂e ∼=
⋃

e′∈Q(e)\{e}

⟨e′;w(v, e′)⟩.

So for i-cells e of Q and vertices v of e, we may attach an i-cell, denoted ⟨e; v⟩, via
ϕ(e, v).

Some properties of Sal(Q) are summarized in the following

Proposition 6. Let Q be QMH (respectively LMH, MH). Then Sal(Q) is QMH
(LMH, MH, resp.). There is a natural map ψ from cells of Sal(Q) to cells of Q
given by ψ(⟨e; v⟩) = e. We also have

∂⟨e; v⟩ =
⋃

e′∈Q(e)\{e}

⟨e′;w(v, e′)⟩.

The restriction of ψ to Sal(Q)(0) is an isomorphism onto Q(0). In general, for an
i-cell e of Q, the preimage ψ−1(e) consists of |V (e)| i-cells of Sal(Q), i.e., there is
one distinct i-cell for every vertex of e.

1.3. A categorical structure for MH complexes. In this section, let Q be a
QMH, LMH, or MH complex with maps w and w (or we and we) as in Definition
2 (resp. Definition 4), and let X = Sal(Q) be the Salvetti complex for Q. In this
section we define a category C = C(Q) based on Q (or more specifically, on X).
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Definition 7. A positive (resp. negative) path in X is an edge path γ = (e1, . . . , ek)
which is a positive (resp. negative) path in the 1-skeleton of X when X(1) is viewed
as an oriented graph with orientation described above. A positive path γ has an
associated negative path γ−1 formed by traversing γ in the reverse direction (so
γ−1 = (e−1

k , . . . , e−1
1 ) where e−1 denotes the edge e with its opposite orientation).

The length of γ is defined to be ℓ(γ) = k. A minimal positive path in X is a positive
path γ between v1 and v2 so that ℓ(γ) = d(v1, v2).

Note that there is at least one minimal positive path between any two vertices.
The following definition will be of use later.

Definition 8. Let γ be a positive path in X, say γ = (⟨v1, e1⟩, . . . , ⟨vk, ek⟩), where
each ei is an edge of Q from vi to vi+1, then the path γ◦ opposite to γ is given by
γ◦(⟨vk+1, ek⟩, ⟨vk, ek−1⟩, . . . , ⟨v2, e1⟩).

Definition 9. Let γ1, γ2 be positive paths in X with the same initial and terminal
vertices. We say γ1 and γ2 are elementarily equivalent if we can write

γ1 = αγ̂1β, and

γ2 = αγ̂2β,

where

(i) α and β are positive paths, and
(ii) γ̂1 and γ̂2 are minimal positive paths from a vertex v of X to the vertex

w(v, e), where e is a cell of Q containing v.

That is, we can derive γ2 from γ1 by replacing a minimal positive subpath (from v
to w(v, e)) with another minimal positive path. We say γ1 and γ2 are equivalent,
and write γ1 ∼ γ2, if there is a finite sequence of elementary equivalences taking γ1
to γ2. The ∼ equivalence class of a positive path γ is denoted [γ].

We note that elementary equivalence clearly does not change lengths, so if γ1 ∼ γ2,
we know that ℓ(γ1) = ℓ(γ2). In other words, the length of an equivalence class of
paths is well defined, which by abuse of notation we still call ℓ.

We can now define a category for an MH complex Q.

Definition 10. Let Q be a QMH, LMH, or MH complex. We define a category
C(Q) as follows: the objects of C(Q) are the vertices of Q, and the set of morphisms
from x to y is the set of equivalence classes of positive edge paths from x to y.
Composition is given by concatenation of paths.

An immediate consequence of the definition is the following

Proposition 11. For any x ∈ Obj(C(Q)), the map γ 7→ γ◦ is an (order reversing)
isomorphism of (Cx→,≼) with (C→x,≽).

We will study further properties of C(Q) in the following section.

2. Simplicial MH complexes

We now turn our attention to the main objects of study, which generalize simplicial
hyperplane arrangements.

Definition 12. Let Q be an MH complex. We call Q simplicial if Q is dual to a
simplicial triangulation of a manifold.
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Our following terminology departs from [Sal93] (his “MH∗-complex” is our “flat
involutive MH complex”).

Definition 13. Let Q be a simply connected MH (or LMH) complex. We call Q
flat if every pair γ1, γ2 of minimal positive paths in Sal(Q) with the same initial
and terminal vertices are equivalent under ∼. If Q is flat and x, y are vertices of Q,
then the (unique) equivalence class of positive minimal paths from x to y will be
denoted u(x, y).

We say that Q is involutive if there is an automorphism ϕ : Q(1) → Q(1) of the
1-skeleton of Q of order 2 (i.e., ϕ2 = id) such that

(1) ϕ(v) is the unique vertex such that d(v, ϕ(v)) = maxw∈Q(0) d(v, w), and
(2) For all vertices v, w of Q, d(v, ϕ(v)) = d(v, w) + d(w, ϕ(v)).

For any vertex x, we let ∆(x) denote a (choice of) minimal positive path from x to
ϕ(x).

If Q is involutive, the involution ϕ induces a map on the set of positive paths.
By Proposition 24 of [Sal93], ϕ preserves ∼, and thus induces an automorphism of
C(Q), which by abuse of notation we still call ϕ. Again by abuse of notation, the
morphism corresponding to ∆(x) in C is denoted ∆(x). We note that if Q is also
flat, then every minimal positive path from x to ϕ(x) in Q is equivalent to ∆(x),
and thus the morphism ∆(x) (= u(x, ϕ(x))) is determined independent from our
choice of path between x and ϕ(x) in Q.

We now have the terminology to state our first main theorem.

Theorem 14. Suppose Q is a flat, involutive, simplicial MH complex (or FISMH).
Then C(Q) is a Garside category under ∆ (i.e., the map x 7→ ∆(x)) and ϕ as defined
above.

We will prove this theorem in a series of lemmas. The first follows immediately
from the definitions.

Lemma 15. Suppose Q is an involutive MH complex, and let x, y be vertices of Q.
Let f be a minimal positive path from x to y, and let f∗ be a minimal positive path
from y to ϕ(x). Then the concatenation ff∗ is a minimal positive path from x to
ϕ(x). Thus, if Q is also flat, ff∗ ∼ ∆(x).

This implies all atoms are simple, since the atoms are paths of length 1 and hence
necessarily minimal, satisfying (2) of the definition of a Garside category. The next
lemma follows immediately from our previous discussions, namely that if γ1 ∼ γ2,
then ℓ(γ1) = ℓ(γ2).

Lemma 16. If Q is an MH complex, then C(Q) is homogeneous with length function
ℓ.

The following paraphrases [Sal93, Thm. 31].

Lemma 17. If Q is FISMH, then C(Q) is cancellative.

We now confirm that ∆ is indeed a natural transformation.

Lemma 18. If Q is a flat involutive MH complex, then ∆ is a natural transformation
from 1C(Q) to ϕ.
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Proof. First, it is clear from the definition that ∆(x) is a morphism from x to ϕ(x).

So it remains to verify that for x, y ∈ Obj(C(Q)) and x
f−→ y, we have

f∆(y) = ∆(x)ϕ(f).

After translating notation, this is the statement of [Sal93, Prop. 25(i)]. □

The last, and least trivial, portion of the argument is to show that (Cx→,≼)
and (C→y,≽) are lattices. To do this, we adapt arguments of Deligne [Del72]. By
Proposition 11, it suffices to show that (Cx→,≼) is a lattice.

In the rest of this section, let Q be FISMH and C = C(Q).

Proposition 19. [Sal93, Thm. 31(iii)] Let f ∈ Cx→. Then there is a y ∈ Obj(C)
satisfying the following property: u(x, z) ≼ f if and only if u(x, z) ≼ u(x, y).

The following is the main result which we use when showing Cx→ is a lattice.

Proposition 20. [Del72, Prop 1.14, Cor 1.20] Let x ∈ Obj(C) and S ⊆ Cx→ a set
of morphisms starting at x with bounded length (meaning there is some N so that
ℓ(f) ≤ N for all f ∈ S). Then S satisfies

(1) idx ∈ S,
(2) If g ∈ S and f ≼ g, then f ∈ S; and

(3) Suppose x
g−→ y and y1, y2 are vertices adjacent to y in Q. Let e ∈ Q be the

(unique) 2-cell containing y, y1, and y2 (this exists since Q is simplicial).
Let z = w(y, e). If gu(y, yi) ∈ S for i = 1, 2, then gu(y, z) ∈ S.

if and only if there is a (unique) morphism h ∈ Cx→ such that

S = { g ∈ Cx→ : g ≼ h }
For the forward implication, we mimic the proof of Proposition 1.14 of [Del72];

for the reverse, we mimic the proof of [Del72, Cor. 1.20].

Proof. Suppose (1), (2), and (3) are satisfied. Let h ∈ S with maximal length (this
exists since S has bounded length). We claim this h works. It suffices to show that

(∗) Suppose x
g−→ y and y1 ∈ Obj(C) is adjacent to y such that (a) g ≼ h but (b)

gu(y, y1) ̸≼ h and gu(y, y1) ∈ S. Then there exists g′, y′, and y′1 satisfying
(a) and (b) with g′ strictly longer than g.

Since gu(y, y1) ∈ S, the maximality of ℓ(h) implies g ̸= h. Thus there is some
y2 ̸= y1 adjacent to y such that gu(y, y2) ≼ h. Letting e be the 2-cell of Q containing
the vertices y, y1, y2 and z = w(y, e), this implies that gu(y, z) ∈ S by (3). Note
that since gu(y, y1) ≼ gu(y, z), we must have that gu(y, z) ̸≼ h.

Consider u(y, z). Let y0 be a vertex of e so that u(y, y2) ≼ u(y, y0), and u(y, y0)
has the maximal length among paths p ≼ u(y, z) satisfying gp ≼ h. Let g′ = gu(y, y0).
Let y′ be the vertex of u(y′, z) adjacent to y′. Then g′ and y′ satisfy (a) and (b)
above. Uniqueness of h is immediate.

Now suppose S = { g ∈ Cx→ : g ≼ h } for some h. (1) and (2) are clear, so we
show that S satisfies (3). Suppose g, y, yi, z are as given in (3). We must show that
gu(y, z) ∈ S.

Suppose g ∈ S, say h = gf for some morphism f starting at y. Then by
cancellation we must have that u(y, yi) ≼ f for i = 1, 2. Let y0 be the vertex
guaranteed to exist by 19 for f , so that in particular u(y, y0) ≼ f . One may easily
verify that because y1 and y2 are distinct vertices of e and u(y, yi) ≼ f , we must
have that y0 = w(y, e) = z. □
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From this, the following is immediate.

Corollary 21. Every pair in Cx→ has a unique greatest lower bound under ≼.

Proof. Let f, g ∈ Cx→ and let

Sf = {h ∈ Cx→ : h ≼ f }
Sg = {h ∈ Cx→ : h ≼ g }
S = Sf ∩ Sg.

It is clear that S has bounded length and satisfies (1), (2), and (3) of Proposition 20
since both Sf and Sg do. Thus by Proposition 20 there is a unique element, which
we denote f ∧ g such that

S = {h ∈ Cx→ : h ≼ f ∧ g }.
This f ∧ g is clearly a unique greatest lower bound for the pair f, g under ≼. □

In order to show that Cx→ contains joins, we need the following

Proposition 22. [Sal93, Prop. 25(ii)] If Q is a flat involutive MH complex and
c ∈ Cx→y, then if f ∈ Cx→ such that

f = u(x, x1)u(x1, x2) . . . u(xn−1, xn)

for some objects xi, we have that f ≼ c∆n (where ∆ = ∆y or ∆y depending on its
place in the product).

Corollary 23. Every pair in Cx→ has a unique least upper bound under ≼.

Proof. Let f, g ∈ Cx→. Proposition 22 shows that there exists a common upper
bound of f and g: if nf , ng are the integers satisfying f ≼ ∆nf and g ≼ ∆ng , and if
n = max{nf , ng} then both f ≼ ∆n and g ≼ ∆n.

Let S be the collection of all sets S of bounded length with f, g ∈ S and satisfying
(1), (2), and (3) of Proposition 20. Note that S is non-empty, since

{h ∈ Cx→ : h ≼ ∆n }
is contained in S. Let S0 =

⋂
S∈S S. Then S0 has bounded length, satisfies

(1),(2),(3), and contains f, g since each S ∈ S satisfies each of these. By Proposition
20, there is a unique morphism, which we call f ∨ g, such that

S0 = {h ∈ Cx→ : h ≼ f ∨ g }.
Certainly f ≼ f ∨ g and g ≼ f ∨ g, so f ∨ g is an upper bound of f and g. If u is
another upper bound of f and g, then

S′ := {h ∈ Cx→ : h ≼ u } ∈ S,

implying S0 ⊆ S′, and in particular f ∨ g ∈ S′, hence f ∨ g ≼ u. □

We can now conclude by proving Theorem 14.

Proof (of Theorem 14). We have seen that ϕ is an automorphism of C(Q). Lemma 18
shows that ∆ is a natural transformation from 1C(Q) to ϕ. Lemma 16 shows that C(Q)
is homogeneous and Lemma 17 shows that C(Q) is cancellative. Lemma 15 implies
that all atoms of C(Q) are simple. Corollaries 21 and 23 imply that (C(Q)x→,≼) is
a lattice, and their dual statements (and proofs) imply that (C(Q)→y,≽) is a lattice.
Therefore C(Q) is a Garside category. □
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The following is the main consequence that we’re interested in.

Corollary 24. If Q is FISMH, then for any vertex x, π1(Sal(Q), x) ∼= Gx. In
particular, π1(Sal(Q)) is a weak Garside group.

This follows from

Lemma 25. [Sal93, Cor. 18] If Q is an MH complex, then all relations for π1(Sal(Q))
come from the set {γ1γ−1

2 : γ1, γ2 are positive paths with the same endpoints }.

In other words, homotopies between loops in Sal(Q) are equivalent to ∼ equiva-
lences of positive subpaths. Since Gx consists of ∼ equivalence classes of positive
paths and the formal inverses of these equivalence classes, Corollary 24 follows.

3. Application to arrangements and matroids

We now discuss applications to simplicial pseudohyperplane arrangements and
their associated matroids. First, we will give further terminology regarding these
arrangements.

Let A be a pseudosphere arrangement. We say that A is proper (also called
essential in some texts) if

⋂
S∈A S = ∅. We say that A is centrally symmetric if

each element S ∈ A is preserved under the central symmetry −1 of Sd, that is, if
−S = S for all S ∈ A. We call two arrangements A1,A2 homeomorphic, and write
A1

∼= A2, if there is a homeomorphism of Sd which is a bijection between A1 and
A2.

An (open) chamber of A is a connected component of Sd \
⋃

S∈A S. The union of

the closures of the chambers gives a cellulation of Sd (where the pseudospheres of A
are codimension-1 subcomplexes). We call A simplicial if this induced cell structure
on Sd is. The dual complex Q(A) to A is the dual of this cell structure on Sd.

We say that the pseudohyperplane arrangement cA satisfies the above properties
(e.g., proper, simplicial, etc.) if A does. A chamber of cA is the cone on a chamber
of A. We define Q(cA) = Q(A).

We note that centrally symmetric simplicial arrangements are always proper,
since the intersection of centrally symmetric pseudospheres which bound a simplex
must have empty intersection. We also note that two arrangements are homeomor-
phic if and only if their dual complexes are, hence homeomorphism is determined
combinatorially.

The following connects arrangements and MH complexes.

Proposition 26. [Sal93, Prop. 6] Suppose A is an arrangement of pseudospheres
in Sd. Then the complex Q(A) dual to A is MH.

Thus, as with the other MH complexes we have considered, there is a Salvetti
complex Sal(Q(A)), which for brevity we denote Sal(A). (We define Sal(cA) =
Sal(A).) We now determine those arrangements A which give FISMH complexes
Q(A), and hence for which Corollary 14 holds.

Lemma 27. [Sal93, Thm. 20] Suppose A is a proper pseudosphere arrangement.
Then Q(A) is flat.

The following is clear from the definitions.

Lemma 28. If A is a proper centrally symmetric pseudosphere arrangement, then
Q(A) is involutive with involution ϕ(x) = −x.
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Since centrally symmetric simplicial arrangements are always proper, we have
the following

Proposition 29. If A is a centrally symmetric simplicial pseudosphere arrangement,
then π1(Sal(A)) = π1(Sal(cA)) is a weak Garside group.

We can connect the topology of Sal(cA) more directly with the arrangement
cA itself. This connection is completely analagous to the connection between
a hyperplane arrangement and its Salvetti complex via the complement of its
complexification.

Definition 30. Let cA be a pseudohyperplane arrangement in Rd. For H ∈ cA,
define

HC = H + iH ⊆ Cd

(where H + iH = {h1 + ih2 : hi ∈ H }). Then, we define

M(cA) = Cd \
⋃

H∈cA
HC.

We would like to say that M(cA) is homotopy equivalent to Sal(cA), but this is
not quite true. Instead, we need the following variation.

Let Q̂ = Q̂(A) = Q̂(cA) be the cellulation of the unit ball Dd+1 of Rd+1 obtained
by identifying ∂Dd+1 with the cellulation Q(A) of the unit sphere Sd. We have the
following

Proposition 31. [Sal93, Prop. 9] The complex Q̂(A) is an MH complex with
exactly one cell (namely, Dd+1) of top dimension.

Thus we can define Ŝal(cA) = Ŝal(A) := Sal(Q̂(A)), which we call the completed

Salvetti complex. Note that the d-skeletons of Q and Q̂ are the same, so the d-

skeletons of Sal(A) and Ŝal(A) are the same. In particular, since we’re assuming

d ≥ 2, the 2-skeletons are the same, so π1(Ŝal(A)) ∼= π1(Sal(A)). The relevant result
for us is the following (translated into our notation)

Proposition 32. [Des16, Thm. 2.30] If cA is a pseudohyperplane arrangement,

then M(cA) is homotopy equivalent to Ŝal(cA).

In particular, π1(M(cA)) ∼= π1(Sal(cA)). Moreover, [Sal93, §6] implies Ŝal(cA)
is a K(π, 1) for simplicial arrangements, i.e., has contractible universal cover. (This
was also shown in [Des16].) So, we can summarize all of the above results (in
addition to the known result for d = 1) into the following

Theorem 33. If cA is a proper simplicial pseudohyperplane arrangement, then
π = π1(M(cA)) is a weak Garside group and M(cA) is a K(π, 1).

The combinatorial information contained in a pseudosphere arrangement can
be extracted to objects known as oriented matroids, which have broad uses in
mathematics. We recall this connection here, and explain how our above results
apply to this setting.

Definition 34. An oriented matroid is a triple M = (E, E , ∗) where E is a finite
set, E a collection of non-empty subsets of E, and ∗ : E → E a “fixed point-free”
involution of E (so (x∗)∗ = x and x∗ ̸= x) such that



SIMPLICIAL PSEUDOHYPERPLANE ARRANGEMENTS 13

(1) If A,B ∈ E and A ⊆ B, then A = B,
(2) If S ∈ E then S∗ ∈ E and S ∩ S∗ = ∅, and
(3) For S, T ∈ E with x ∈ S ∩ T ∗ and S ̸= T ∗, there is a C ∈ E with

C ⊆ (S ∪ T ) \ {x, x∗}.
We call E the ground set and the elements of E the circuits of the oriented matroid
M. The rank rk(M) of M is the minimal cardinality of a set in E . An isomorphism
between oriented matroids is a bijection between ground sets which induces a
bijection on the circuits and commutes with the involution.

Let A be a pseudosphere arrangement in Sd with each element endowed with a
choice of orientation. Let

E = E(A) = {H : H a halfspace of S ∈ A}.

Define ∗ on E by exchanging the halfspaces of any given pseudosphere, e.g., if H1, H2

are the halfspaces of S then H∗
1 = H2 and H∗

2 = H1. We then let E = E(A) be the
collection of minimal subsets C of E with

(1) C ∩ C∗ = ∅, and
(2)

⋃
H∈C H = Sd,

where H is the topological closure of the halfspace H in Sd. By [FL78, Thm. 16],
M(A) := (E(A), E(A), ∗) is an oriented matroid of rank d+ 1. (M(A) is not to be
confused with M(cA).) The content of the Folkman-Lawrence realization theorem
is the following.

Proposition 35. [FL78, Thm. 20] Let M = (E, E , ∗) be an oriented matroid with
rk(M) = r. Then there is a proper central pseudosphere arrangement A(M) in
Sr−1 such that the set of cells of the corresponding dual complex Q(A(M)) are
order-isomorphic to the subsets C of E with C ∩ C∗ = ∅, with vertices of Q(A(M))
mapping to elements of E. Moreover, if M is an oriented matroid, then

M(A(M)) ∼= M,

and if A is a proper pseudosphere arrangement, then

A(M(A)) ∼= A

(where ∼= denotes isomorphism and homeomorphism, respectively).

In particular, two pseudosphere arrangements are homeomorphic if and only if
their corresponding oriented matroids are isomorphic.

This allows us to sensibly define Sal(M) = Sal(A(M)) and Ŝal(M) = Ŝal(A(M))
for any oriented matroid M. By unraveling definitions, one sees that these are
equivalent to typical definitions of a Salvetti complex of an oriented matroid [Zie87,
§5.5]. Thus Theorem 33 can be rephrased in terms of matroids as follows.

Theorem 36. If M is an oriented matroid and its pseudosphere realization A(M)

is simplicial, then π = π1(Sal(M)) is a weak Garside group and Ŝal(M) is a K(π, 1).
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