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A B S T R A C T

We have shown previously that different homeostatic mechanisms in biochemistry create input-output curves
with a “chair” shape. At equilibrium, for intermediate values of a parameter (often an input), a variable, Z,
changes very little (the homeostatic plateau), but for low and high values of the parameter, Z changes rapidly
(escape from homeostasis). In all cases previously studied, the steady state was stable for each value of the input
parameter. Here we show that, for the feedback inhibition motif, stability may be lost through a Hopf bifurcation
on the homeostatic plateau and then regained by another Hopf bifurcation. If the limit cycle oscillations are
relatively small in the unstable interval, then the variable Z maintains homeostasis despite the instability. We
show that the existence of an input interval in which there are oscillations, the length of the interval, and the size
of the oscillations depend in interesting and complicated ways on the properties of the inhibition function, f, the
length of the chain, and the size of a leakage parameter.

1. Introduction

Most human and animal physiological systems can function well in
the face of gene polymorphisms and changes in the environment be-
cause of rich networks of regulatory mechanisms. This is true at all
levels of organization, from gene networks, to cellular biochemistry, to
tissue and organ properties, and to the behavior of the whole organism.
In the simplest case, this is illustrated conceptually by the function Z(I)
in Fig. 1. The variable Z depends on I, which could represent an input,
an environmental variable, or some other variable of the system.
However, over a large range of I (between H1 = 6 and H2 = 15 in
Fig. 1), the value of Z(I) changes very little. The homeostatic region is
the range of I where Z(I) changes very little. Outside the homeostatic
region the regulatory mechanisms fail and Z(I) changes rapidly as I
varies; we call this escape from homeostasis [1]. Overall the curve
giving the dependence looks like a chair [2], and examples of such chair
curves abound: body temperature as a function of environmental tem-
perature [1]; liver homocysteine concentration as a function of me-
thionine input [1]; afferent arterial flow in the kidney as a function of
blood pressure [3]; cerebral blood flow as a function of cerebral blood
pressure [4]. In studying metabolism, we have found that many dif-
ferent kinds of biochemical mechanisms can produce chair curves [5].
Golubitsky and Stewart have used singularity theory as an analytical
tool to find nodes in networks that are homeostatic with respect to an
input [6].

We have investigated [5] many different biochemical mechanisms
that give rise to homeostasis where, typically, I is an input to the net-
work. In all of these cases, the system had a unique stable equilibrium
for each I. In this paper we show an entirely new phenomenon. The
steady state of the system can lose its stability, yet the system still shows
a homeostatic region and a chair curve. Consider the simple biochem-
ical chain pictured in Fig. 2. The last element in the chain, Xn, inhibits
the reaction that takes X1 to X2. This kind of feedback inhibition is one
of the most common homeostatic mechanisms in biochemistry [5]. The
homeostatic variable is Xn because as I increases, Xn tends to increase,
which increases the inhibition by f, limiting how much Xn rises.

For =n 4 and an appropriate choice of the inhibitory function, f, the
system shows the behavior indicated in Fig. 3. For I small, the equili-
brium is stable and X4(I) increases linearly in I. At the value I1 there is a
Hopf bifurcation and the equilibrium becomes unstable but shows
homeostasis (the red curve). Finally at I2, the equilibrium becomes
stable again and shortly thereafter X4(I) shows escape from homeostasis
by rising linearly with I. For I in the interval (I1, I2), the system has a
stable limit cycle; the green curves show the maximum and minimum
values of X4(I, t) as X(I, t) traverses the limit cycle for fixed I.

Consider biological experiments on this system where the experi-
menter chooses an input, I, and then measures X4. When I< I1, the
measurements will cluster tightly about the stable equilibria on the blue
curve. For I1< I< I2, there will be more spread of the measured values
because X4 is changing in time because the dynamics has a limit cycle.
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The spread of the measured values of X4 will be between the upper and
lower green curves (except for measurement error). When I> I2, the
measurements will again cluster tightly about the stable equilibria on
the blue curve. The experimenter may not know of the existence of the
limit cycles, but will notice that there is more spread of the measured
values of X4 when I1< I< I2. Since the upper and lower green curves
are close to each other, the total set of measured values of X4, over a
wide range of choices of I, will show the same general shape of a chair
curve with a homeostatic region in the middle. This is what we mean by
“homeostasis despite instability.”

In Section 2, we investigate how the phenomenon of homeostasis

despite instability depends on network length, n, properties of the
feedback function, f, and the value of α. In Section 3, we assume that f
has a special form depending on only three parameters, the slope of f,
the minimum of f, and the location of the region with constant negative
slope. We present numerical calculations that show how the size of the
unstable region and the amplitude of the limit cycles depend on these
three parameters. In the Discussion, we explain that another homeo-
static motif, the parallel inhibition motif [5], shows similar behavior, so
homeostasis despite instability is not limited to the feedback inhibition
motif.

2. Dependence of stability on network length

Throughout this section we make the following assumptions about f:

> ′ ≤f f fis differentiable, 0, and 0. (1)

We assume f>0 so that the backwards reaction of X2→ X1 does not
occur and the forward reaction of X1→ X2 always occurs at some rate.
The assumption that f ′≤ 0 is made so that Xn inhibits the production of
X2 from X1. Additionally, we assume aj>0 for each j. Other hypotheses
will be introduced as appropriate. Let xi(t) denote the concentration of
Xi at time t. Each differential equation expresses that the rate of change
of the variable is the rate at which it is made minus the rate at which it
is consumed. We assume mass action kinetics for all reactions except for
the rate from X1 to X2 that depends on inhibition from Xn expressed
through f. The dynamics are given by
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where dot indicates a derivative in t. When =α a ,2

+ = − +x x I a x x˙ ˙ ( )1 2 2 1 2 so that as t→∞, + →x x I a/1 2 2. This allows us
to reduce the dimension of the steady state Jacobian by 1 and to sig-
nificantly simplify the analysis. We are interested in how n and the
properties of f affect the stability of equilibrium solutions to this system.
For =n 2, 3, and4, we are able to characterize when an equilibrium is
stable, and we can do the same for =n 5 if =α 1. For general n, we give
a necessary condition for instability and a sufficient condition for in-
stability, but neither is necessary and sufficient.

Using the equations above, it is easy to see that the steady state
solutions satisfy:

Fig. 1. A classic chair curve. The variable Z shows homeostasis and escape from
homeostasis with respect to the variable I.

Fig. 2. A simple biochemical chain with feedback inhibition. The variable Xn

inhibits the reaction that takes X1 to X2 via the function f(Xn). I is the input to
the chain.

Fig. 3. Homeostasis despite instability. In the feedback chain in Fig. 2, the equilibrium becomes unstable for I in the interval (I1, I2) for an appropriate choice of the
feedback function f. We chose =n 4, =α 1, =a 1j for each j, and = − +− − +f x e x( ) 10 Θ(5 ) 1/2,x1/(5 ) 1/5 where Θ(x) is the Heaviside step function. In Panel A, the blue
and red curves show the values of X4(I) at the stable and unstable equilibria, respectively. The green curves show the maximum and minimum values of X4 as the
dynamics traverses the limit cycle for fixed I. Since the green curves are close to each other, experimental measurements (see text) will follow the shape of the curve
of equilibria despite the instability. In Panel B we show the time course of the oscillations in X4 for =I 10, where the maximum amplitude oscillations are obtained.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Lemma 1. Suppose f satisfies (1). Then for each I∈ [0, ∞), (2) has a
unique solution.

Proof. Let = +h x a f x α a x a f x( ) ( ( ) )( )/( ( ))n1 1 so that =h x I( )n . By the
hypotheses on f, h(x) is strictly monotone increasing, =h (0) 0 and h
(x)→∞ as x→∞. Thus, h: [0, ∞)→ [0, ∞) is invertible, so that xn is
determined by I. For j< n, each is an explicit function of xn and I and is
thus determined. □

From now on, we drop the overbar and denote =x x I( )j j as the
steady state concentration of Xj. Except in Theorem 1, we consider only

=a 1j for each j. We are interested in the value of xn and the stability of
the equilibrium. As (2) shows, xn depends only on a1 and an. The value
of an scales xn, so varying an leaves the range of homeostasis unchanged.
Changing a1 is equivalent to rescaling f(x), so nothing is lost by setting

=a 11 . We choose =a 1j for = … −j n{2, , 1} for simplicity. Choosing
other values makes the proofs more complicated and the statements of
some inequalities a little different, but involves no new ideas. We will
see later that the choice of α does make a difference.

Differentiating the steady state equation for xn with respect to I and
using (1), we have, for =a 1,j

′ =
+

+ − ′
x I

f x f x α
f x α αf x I

( )
( )( ( ) )

( ( ) ) ( )n
n n

n n
2 (3)

so that ′ >x I( ) 0n for every I. Although ′x I( )n is always nonzero, it may
be small over a range of I so that xn exhibits a homeostatic region. We
will show in the theorems below that if |f ′(xn)I| is large, then the
equilibrium is unstable and if |f ′(xn)I| is small, then the equilibrium is
stable. Together with (3), this suggests that the homeostatic region and
region of instability overlap, as depicted in Fig. 3.

The characteristic polynomial of the Jacobian when all =a 1j is
given by
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Expanding, this may also be written as
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Note that every coefficient of Pn is positive (since f ′≤ 0), so that, by
Descartes’ rule of signs, there can be no real positive roots of Pn. In
addition, =λ 0 is never a root, so a loss of stability must occur by a pair
of eigenvalues crossing the imaginary axis, that is, via a Hopf bifurca-
tion.

When =α 1, = −λ 1 is always a root of Pn(λ). This is a reflection of
the fact that + =x x I,1 2 mentioned above. Dividing out the factor of

+ λ(1 ) gives us the characteristic polynomial for the reduced Jacobian:
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Expanded, this is
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We first study the case when n≤ 5. Theorems 1 and 2 together show
that =n 4 is the minimum network length for which instabilities can
occur.

Theorem 1. Let f satisfy (1). If =n 2 or 3 and α>0 then the equilibrium is
locally asymptotically stable for every I∈ [0, ∞).

Proof. Consider =n 3. Although the theorem is true for general α>0,
we prove it in the case =α a2 only. The technique for the general case is
the same as the technique for the = =α n1, 4 case used in the proof of
Theorem 2.

When =n 3 and =α a ,2 using = −x I a x/ ,1 2 2 the reduced Jacobian is
given by

⎜ ⎟= ⎛
⎝

− + ′ −
−

⎞
⎠

J a f x a a f x I a x
a a

( ( ) ) ( )( / )1 3 2 1 3 2 2

2 3

Since − >I a x/ 02 2 and (1) holds, we see <JTr( ) 0 and >Jdet( ) 0 for
each choice of I≥ 0, so that the steady state is asymptotically stable for
every I≥ 0. For the case =n 2, and α>0, the proof is similar. □

Theorem 2. Fix I>0. If =n 4 and α>0, or if =n 5 and =α 1, then f
can be chosen so that f satisfies (1) and the equilibrium is unstable.

Proof. Taking =α 1 simplifies the calculations because it allows us to
consider the roots of ∼P ,n a degree −n( 1) polynomial, when determining
stability rather than the roots of Pn, a degree n polynomial. So, in the
case of =n 4 and α>0 as well as =n 5 and =α 1, we need to localize
the roots of a degree 4 polynomial. We may use the same technique in
both cases. For this reason, the general case of =n 4, α>0 is similar to
the case of = =n α5, 1 and, as in the proof of Theorem 1, we prove
Theorem 2 only in the case =α 1.

The main tool of the proof is the argument principle. Consider a
contour in the complex plane which connects the points Ri and− Ri via
a semi-circle in the right half plane and a line on the imaginary axis. For
large R, the dominant term of ∼Pn on the semi-circle is of the form

− −R en n iθ( 1) ( 1) . So, in the limit as R→∞, the change in the argument on
the semi-circle is −n π( 1) . For �∈z , let ℜ(z) denote the real part of z
and ℑ(z) denote the imaginary part. We may determine the change in
the argument on the imaginary axis between Ri and − Ri by computing
the zeros and tracking the signs of ∼P iy( ( ))nR and ∼P iy( ( ))nI . For =n 4, the
zeros of ∼P iy( ( ))4R satisfy

=
+ − ′
+ +

= >y
f x f x I
f x f x

r
( ( ) 1) ( )
( ( ) 3)( ( ) 1)

: 0Re
2 4

2
4

4 4

and the zeros of ∼P iy( ( ))4I satisfy

= = + = >y y f x r0 or 2 ( ) 3 : 0.Im
2

4

To compute the change in the argument of on the imaginary axis, we
track which quadrant of the complex plane ∼P iy( )4 lies in as y varies from
∞ to − ∞. Note that = − − +∼P iy C y r y r( ( )) ( )( )Re Re4R where C is a
positive constant and = − − +∼P iy y y r y r( ( )) ( )( )Im Im4I . For y large,

<∼P iy( ( )) 04R and <∼P iy( ( )) 04I so ∼P iy( )4 lies in quadrant 3. ∼P iy( ( ))4R and
∼P iy( ( ))4I have only simple roots, so the quadrant changes exactly when

y passes through one of the roots. The path ∼P iy( )4 takes, and therefore
the change in the argument, depends on whether rRe< rIm or rIm< rRe.
We consider these two cases separately.

Case 1: rIm< rRe
The number line below shows which quadrant of the complex plane

∼P iy( )4 lies in.
∼P iy( )4 goes from − ∞i to i∞ as y goes from ∞ to − ∞ and, as the

number line shows, makes no additional revolutions in between. That
is, the change in the argument of on the imaginary axis is π. Along with
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the change of 3π on the arc of the semi-circle, the total change in the
argument of on the whole contour is 4π, indicating that there are 2
roots with positive real part when rIm< rRe.

Case 2: rRe< rIm

The change in the argument of on the imaginary axis is − π3 in this
case. The total change on the whole contour is then 0 and there are no
roots inside the contour.

Let λ *4 be a root of P4 with largest real part. The analysis above
shows that = −λ r rsign( ( *)) sign( )Re Im4R . Simplifying this expression,
we have

= − ′ − + +λ f x I f x f xsign( ( *)) sign( ( ) (2( ( ) 1)( ( ) 2) )4 4 4 4
2R (5)

For =n 5 and =α 1 we again compute the zeros of the real and
imaginary parts of ∼Pn in order to determine which quadrant it lies in as it
traverses the imaginary axis. The zeros of ∼P iy( ( ))5R satisfy
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+
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3 ( ) 4

( ) 4
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5

It can be shown that the change in the argument of ∼P iy( )5 as y goes from
∞ to − ∞ is − π4 if and only if �∈±r and < <− +r r rIm . Further, if

�∈±r , then < +r rIm is always satisfied. Let λ *5 be a root of P5 with
largest real part. Then, sign(λ *5 ) ≥ sign( −−r rIm) which is equal to the
sign of

⎜ ⎟
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(6)

Now, fix I>0 and pick any f satisfying (1). The equilibrium value is
independent of network length, so let = =x x x4 5. Now, if we have

>λsign( ( *)) 04R and >λsign( ( *)) 05R then the equilibrium is unstable
and we are done. If not, then we may choose g satisfying (1) with

=g x f x( ) ( ) so that the equilibrium value with g as the feedback
function is the same, but with ′g x( ) large enough so that

>λsign( ( *)) 04R and >λsign( ( *)) 0,5R which guarantees the equili-
brium is unstable. □

Theorem 3. Let f satisfy (1), I>0, and =α 1. Let λ *4 and λ *5 be the roots
of and ∼P5 with largest real part. If ≥λ( *) 04R then >λ( *) 05R .

Note that in particular, Theorem 3 says that for =α 1, if the network
with length 4 is unstable, then the network with length 5 is unstable as
well.

Proof of Theorem 3. The steady state value of xn is independent of n.
So, the theorem is proved if the expression in (6) is strictly larger than
the expression in (5). Letting = =x x x ,4 5 this requires
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Rearranging the inequality, we see this is true if and only if
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+ + +
f x
f x f x

f x f x f x
6 ( ) 8
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( ) 4
[2 ( ) 8 ( ) 15 ( ) 12]

2
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The left hand side is negative and the right hand side is positive so
the inequality is always satisfied. □

We now study stability in the case of general n. By applying
Gershgorin’s circle theorem (see, for example, [7]) to the Jacobian, we
find a necessary condition for instability of the equilibrium, which is
presented in the following proposition.

Proposition 1. Let f satisfy (1) and fix I. Suppose the equilibrium is
unstable. If =α 1 then − ′ > +f x I f x( ) ( ) 1n n . If α≠ 1 then
− ′ > +f x I f x α2 ( ) ( )n n .

The following theorem provides a sufficient condition for in-
stability.

Theorem 4. Let f satisfy (1) and fix I, n≥ 4, and α>0. Suppose that

− ′ > + −

−( )( )f x I f x α( ) 2( ( ) ) secn n
π

n

n3
2( 1)

1
and f(xn)< α. Then for

m≥ n, the equilibrium of the network with length m is unstable.

Proof. We use notation and Theorems 1 and 2 of [8]. First, consider the
network of length n. Let = −Q λ P λ( ) ( 1)n n where Pn defined as in (4). Pn
has a root with positive real part when Qn has a root with real part
greater than 1. Define =− ′

+γ: f x I
f x α

( )
( )

n
n

. We may write

= − + + +− −Q λ λ α λ γ f x λ( ) ( 1 )( ) ( )n
n

n
n1 1

and view Qn(λ) as a perturbation of = − + +−p λ λ α λ γ( ): ( 1 )( )n 1 . A
root of p with largest real part is given by

= − −λ γ e*: .n iπ n1/( 1) /( 1)

Let Z(p, ε) be the root neighborhoods of p under the metric
= −d p q a b m( , ) max /j j j with =−m 1n 1 and =m 0j for ≠ −j n 1 as

defined in [8]. Let Z*(p, ε) be the connected component of Z(p, ε)
containing λ*. By Theorem 2 of [8] there is at least one root of Qn in
Z*(p, f(xn)). So it is sufficient to show that
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so z∉ Z(p, f(xn)).

Finally, suppose = −zarg( ) π
n
3

2( 1) and ℜ(z)≥ 1. Then = −z re
πi

n
3

2( 1) for

⎟∈ ⎡
⎣⎢

∞⎞
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−( )r sec ,π
n
3

2( 1) and

⎜ ⎟
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so again, z∉ Z(p, f(xn)) and we have shown the case of =m n. For

m> n, note that −

−( )( )sec π
n

n3
2( 1)

1
is decreasing in n so that if the hy-

potheses are satisfied for =m n, they must also be satisfied for
m> n. □

In practice, if we are given f, n, and α and we wish to know if there is
an I for which the equilibrium is unstable, we may use (2) to solve for I
as a function of xn: = +I x f x α f x( ( ) )/ ( )n n n . Then the hypotheses of
Proposition 1 and Theorem 4 can be written independent of I.
Proposition 1 can then be used to find xn for which stability is guar-
anteed and Theorem 4 can be used to find xn for which instability is
guaranteed. The corresponding values of I can be found by substituting
xn back into (2) (Fig. 4).

Fig. 4. Instability regions as a function of network length. A: The solid red area shows the instability region with = +
+

f x( ) 1/4
x

10
1 10 and =α 1

50 computed nu-

merically. f(x)> α for all x so Theorem 4 does not hold and if n is large enough the equilibrium is stable for every I∈ [0, ∞). Outside of the green lines, Proposition 1
applies so the equilibrium must be stable. B: f(x) as in A but =α 1 so that there are I for which Theorem 4 applies. The dark striped area shows where Theorem 4
guarantees instability and the solid red area shows where we have numerically calculated instabilities to occur. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)
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3. A special case

To better understand how the properties of f affect the system, we
consider a particular form of f when =n 4. Consider f of the form

=
⎧
⎨
⎩

+ <
+ − ≤ ≤

>
f x

A C x
A C sx sx A
C sx A

( )
, 0

, 0
, (7)

where A> C, s>0, and C≥ 0. Let = −f x f x h( ) ( )h for h≥ 0. We will
examine how varying C, s, and h effect the instability region and am-
plitude of limit cycles when =n 4 and =α 1. We provide two theorems.
To state the theorems, we define = >I I x Iinf{ 0: ( )isunstable}1 and
= >I I x Isup{ 0: ( )isunstable}2 and note that (I1, I2) is the instability

region. The first theorem relates the parameters of fh with the existence
of the instability region. The second theorem shows that when the in-
stability region is not empty, −x I x I( ) ( )4 2 4 1 must be relatively small.
The purpose of the second theorem is to show that the region of in-
stability is contained in the homeostatic region.

Theorem 5. Define fh(x) as above, let =n 4 and =α 1. Let C*>0 satisfy
+ = +C C A sh2 *( * 2)2 . If C> C* then the equilibrium is stable for every

I∈ [0, ∞). If 0< C< C*, then the instability region is nonempty and
I2<∞. If =C 0 then the instability region is nonempty and = ∞I2 .

Proof. First note that if x4< h or − >s x h A( )4 then ′ =f x( ) 0h 4 and by
Proposition 1, the equilibrium is stable.

= − + − − + + − −g x sx A C s x h A C s x hLet ( ) 2( ( ))( 2 ( )) .2

For ∈ +x h A s h( , / ),4 applying Eq. (5) from the proof of Theorem 2
shows that the equilibrium is stable if g(x4)< 0 and unstable if g
(x4)> 0. Note that g is strictly monotone increasing and

+ = + − +g A s h A sh C C( / ) ( ) 2 (2 )2.
Suppose C> C*. Then < + <g x g A s h( ) ( / ) 0 for all

∈ +x h A s h( , / ) so that the equilibrium is stable for every I≥ 0.
Now suppose C< C*. Then + >g A s h( / ) 0 so there is an interval

⊂ +U h A s h( , / ) so that if x4∈U then g(x4)> 0 and the equilibrium is
unstable. If, in addition, C>0, then the proof of Lemma 1 still works
and x4→∞ as I→∞ so that there is an I for which > +x A s h/4 and

stability is regained. In this case I2 satisfies = +x I A s h( ) /4 2 .
On the other hand, if =C 0, then as in Lemma 1, x4 satisfies

= + =x f x x f x Iℓ( ): ( ( ) 1) / ( )4 4 4 4 . Because f(x)→ 0 as → +x A s h/ , we
see that ℓ(x)→∞ as → +x A s h/ and + → ∞A s hℓ: [0, / ) [0, ) is in-
vertible. Thus we always have < +x A s h/ ,4 so stability is not regained
and = ∞I2 . □

Theorem 6. Define fh(x) as above, let =n 4 and =α 1. Suppose the
instability region is nonempty. Then >x I x I( ) ( )4 1

8
9 4 2 .

Proof.

= − + − − + + − −g x C sx A C s x h A C s x hDefine ( , ) 2( ( ))( 2 ( )) .2

This is the same g as in the proof of Theorem 5 except that we make the
dependence on C explicit. We know that the equilibrium is stable when
g<0 and unstable when g>0. Note that g is decreasing in C, so we
have g(x, C)< g(x, 0). We also have = +x I A s h( ) /4 2 . Letting =κ ,1

9 we
have

⎛
⎝

⎞
⎠

= − +

= − + − − + + +
≤ − − +
= − − − −
< − =

g x I g κ A s h

κ A κ sh κA κsh κA κsh
κ A κA κA
κ A κA κA κA

A κA

8
9

( ), 0 ((1 )( / ), 0)

(1 ) (1 ) 2( )( 2)
(1 ) 2 ( 2)
(1 ) 2( ) 8 8

9 0

4 2

2

2

3 2

The instability region is nonempty so I1 exists and x4(I1) satisfies
=g x I C( ( ), ) 04 1 . However, g is increasing in x and we have shown that
<g x I C( ( ), ) 08

9 4 2 so we must have ∈ ( )x I x I x I( ) ( ), ( )4 1
8
9 4 2 4 2 as

claimed. □

Theorem 6 says that although −I I2 1 may be large, the value of x4
doesn’t change very much on that interval. This indicates that the in-
stability region lies on the homeostatic plateau. For example, Fig. 5A
shows that for =C 1/5, I1≈ 25 while I2≈ 100, but x4(I1) and x4(I2) are
still close to each other.

Finally, we present numerical calculations of the instability regions
and limit cycle amplitudes as C, s, and h are individually varied. Fig. 5
shows the instability regions. Fig. 6 shows the maximum limit cycle

Fig. 5. Parameter dependence of the instability region. fh(x) is chosen as above with =A 10, =C 1/5, =s 1, and =h 0 except when they are varied. The solid red
regions show the numerically calculated instability regions. A: When =A 10 and =h 0, C*≈ 0.69. As C*→ 0, I2→∞. B: Increasing s decreases both I1 and I2. The
line =s 0.96 has been plotted and indicates for which values of I the equilibrium is stable (blue), and for which values of I there is a limit cycle (green). I1 and I2 are
the intersection points of the line =s 0.96 and the boundary of the instability region as indicated. For small s, +A s h/ is very large, causing I2 to be very large. C:
Increasing h increases the size of the instability region. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of
this article.)
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amplitude over the instability region. We choose A large enough so that
x4(I1)> h.

4. Discussion

Gene expression levels vary by roughly 25% from individual to in-
dividual [9,10]. Furthermore, many genes that code for enzymes have
polymorphisms with high frequency in the human population that are
functional in the sense that they raise or lower the activity of the en-
zyme by 20% to 80% (see, for example, Table 1 in [11]). How do cel-
lular and physiological systems cope with this enormous biological
variation? The answer is that there is a myriad of homeostatic me-
chanisms that reduce the effects of gene expression differences and gene
polymorphisms. Some of these mechanisms operate at the gene level,
some operate at the biochemical level, and some at the physiological
level. But many also operate between levels, because biochemical
substrates affect gene expression levels as do physiological variables
such as hormones. These homeostatic regulations should not be thought

of as a separate layer of regulation since they probably evolved si-
multaneously with the genetic, biochemical, and physiological systems.
They are integral parts of the whole system and must be investigated in
order to understand cell biology and whole body physiology.

It is well known that feedback inhibition with explicit time delays
can produce oscillations in mechanical or biological systems. In the case
of feedback inhibition in a biochemical chain, there is no explicit time
delay, but a time delay is implicit in the length of the chain, n. As we
have shown, the existence of an input interval (I1, I2) in which there are
oscillations, the length of the interval, and the size of the oscillations
depends in interesting and complicated ways on the properties of the
inhibition function, f, the length of the chain, and the size of the leakage
parameter, α. Our main point is that when the amplitudes of the os-
cillations are relatively small, one maintains the homeostatic plateau
and the chair shape despite the instability of the equilibrium and the
limit cycle oscillations.

This phenomenon is not confined to the homeostatic mechanism of
feedback inhibition. In [5] (Fig. 9), we introduced the parallel

Fig. 6. Parameter dependence of the limit cycle amplitudes. The maximum amplitude of the limit cycles over the instability region is calculated numerically and
plotted as a function of the parameters of fh. The parameters are fixed at =A 10, =s 1, =C 1/5, and =h 0 when they are not varied. The maximum amplitudes
appear to be proportional to the size of the instability region. By amplitude, we mean the minimum of x4 subtracted from the maximum over the limit cycle.

Fig. 7. Homeostasis despite instability in the parallel inhibition motif. The network is shown in Panel A. All reactions are linear mass action except for the two
inhibitions given by f and g. Panel B shows the instability region in red and the maximum amplitude of the limit cycle oscillations in green. The amplitude of the
oscillations can be adjusted by changing parameters. The differential equations and the explicit formulas for f and g are available from the authors. (For interpretation
of the references to color in this figure legend, the reader is referred to the web version of this article.)
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inhibition motif and showed that it can produce the classic chair shape
with a homeostatic plateau and escape from homeostasis. It is easy to
prove that the two-variable implementation of the parallel inhibition
motif given in [5] has a stable equilibrium for all inputs I. However,
consider the four-variable implementation of the parallel inhibition
motif given in Fig. 7, Panel A. Each of the inhibitions acts through an
intermediate variable (Y or W), and, as can be seen in Panel B, the
homeostatic variable, Z, shows the phenomenon we study in this paper.
For more discussion of the parallel inhibition motif and an explicit
biological example, see [5].

This paper introduces a mathematically new low codimension
phenomenon in network dynamics - the coexistence of Hopf bifurcation
with homeostasis. Both of these singularities occur on variation of I,
which simultaneously serves the roles of input parameter and bifurca-
tion parameter. Infinitesimal chairs [6] have codimension one and the
co-existence with Hopf bifurcation has codimension two. However, the
existence of codimension two phenomena should not be surprising in
biochemical networks which have many parameters (rate constants and
the like). Note that Fig. 3 suggests a degenerate Hopf bifurcation
[12,13] where a pair of Hopf bifurcations merge and disappear coupled
with an infinitesimal chair, which is a codimension three phenomenon.
Theoretically, the coexistence of homeostasis with bifurcation is a fas-
cinating mathematical problem that should lead to new and interesting
network issues. For example, another codimension three interaction is
that of a hysteresis point [13] with a chair singularity. Such an inter-
action might lead to the coexistence of two plateaus with the possibility
of a new form of switching. In any case, understanding the theoretical
structure of these mathematical interactions will be a subject of future
study.
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