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Introduction

This document compiles the content of a reading course completed in Summer 2020 by the authors
at the Ohio State University under Niles Johnson. It represents the authors first foray into any “serious”
category theory, directly after finishing basic graduate courses in topology (from Hatcher) and algebra.

The course roughly followed the first 3 sections of Emily Riehl’sCategorical Homotopy Theory [Rie14], with
brief excursions into related topics, not all of which are reflected here. In any case, below are a selection of
definitions, exercises, and (mostly) fleshed out proofs. As the creation of this document was entirely a
learning experience, comments or corrections are always welcome!

Acknowledgements
Deep thanks to Niles for his time generously spent supervising the authors learning, as well as for his in-
sightful commentary, helpful suggestions, and advice on navigating graduate school and beyond.
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Chapter 1

Categorical Notions

1.1 Free - forgetful adjunction
Problem 1.1.1 ( [Rie17, 4.2.iii]). Pick your favorite forgetful functor from Example 4.1.10 and prove that it
is a right adjoint by defining its left adjoint, the unit, and the counit, and demonstrating that the triangle
identities hold.

Proof. We choose the forgetful functor U : RMod → Set and show it is right adjoint to the free functor
F : Set→ RMod. The unit η is a natural transformation IdSet ⇒ UF , which we define ηS(s) = s ∈ UF (S).
The legs of the counit ε : FU ⇒ Id

RMod are given by εM (x) = x for x ∈ M . This makes sense since the
elements of the module M are are a basis for UF (M) by definition so the assignment on basis elements
extends to a module homomorphism. We choose to omit the verification that η, ε are natural. The triangle
identities to check are

F FUF

F

Fη

IdF

εF and
U UFU

U

ηU

IdU

Uε

We evaluate the nontrivial composites above. The primary difficulty is notational as the unit and counit are
“identity" morphisms so in some sense the diagrams trivially commute. Anyway, the nontrivial composite
on the left on a set S first sends x ∈ F (S) to x ∈ FUF (S) and then to x ∈ F (S); this is the identity. The
nontrivial composite on the right sends s ∈ U(M) to s ∈ UFU(M) and finally to s ∈ U(M), which is also
the identity. �

1.2 The (co)End times
Definition 1.2.1 ( [Ric20], 4.4.1). Let D and E be categories. Let H1 : Dop × D → E and H2 : Dop × D → E
be functors, and let

τD : H1(D,D)→ H2(D,D)

be a family (indexed over objects in D) of morphisms τD ∈ E(H1(D,D), H2(D,D)). Then (τD)D is called a
dinatural transformation (diagonal natural) if for all morphisms f ∈ D(D,D′), the diagram

H1(D′, D) H1(D,D)

H1(D′, D′) H2(D,D)

H2(D′, D′) H2(D,D′)

H1(f,D)

H1(D′,f)
τD

τD′
H2(D,f)

H2(f,D′)
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commutes.
Definition 1.2.2 ( [Ric20], 4.4.4). Let H : Dop × D → E be a functor. An end of H is a pair (E, τ) where E
is an object of E and τ is a dinatural transformation from constant functor E to H which satisfy universal
property showed the diagram below, for any other such pair (E′, ν)

E′

E H(D,D)

H(D′, D′) H(D,D′)

νD

∃!
νD′

τD′

τD

H(D,f)

H(f,D′)

The object E is usually denoted by
∫
DH .

Definition 1.2.3 ( [Ric20], 4.4.6). The definition is dual to the definition of end. The universal diagram of
the coend is as below.

H(D′, D) H(D,D)

H(D′, D′) E

E′

H(f,D)

H(D′,f) τD
νDτD′

νD′

∃!

The object E of E is usually denoted by
∫ D

H .
Exercise 1.2.4 ( [Rie14] 1.2.8). Let F , G : C ⇒ E , with C small and E locally small. Show that the end over C
of the bifunctor E(F−, G−) : Cop × Cop → Set is the set of the natural transformations from F to G.

Proof. (A ⊆ N) Let (A, a) be end of the bifunctor E(F−, G−), where A ∈ Set and η is a dinatural transfor-
mation from A⇒ E(F−, G−) (see 1.2.1). Then we have following commuting square.

A E(Fc,Gc)

E(Fc′, Gc′) E(Fc,Gc′)

ac

ac′ f∗

f∗

Now let N be the set of natural transformation from F to G, and let η ∈ A with ηc = ac(η). Then η is a
natural transformation, since for every f : c→ c′ from the commuting square we get,

Gf ◦ ηc = ηc′ ◦ Ff.

Thus A ⊆ N .
(A ⊇ N) Now consider a dinatural transformation n : N ⇒ E(F−, G−) given by nc(η) = ηc. Since η is

a natural transformation, it satisfies the above naturality equation for every f : c → c′. From the universal
property of ends, we get a unique transformation from r : N → A.

N E(Fc,Gc)

E(Fc, Fc′)

A E(Fc′, Gc′).

nc

∃!
nc′

f∗

ac′

ac

f∗
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Let i : A → N be inclusion. Let η ∈ N and let η′ = r(η). Let c ∈ C be arbitrary. Consider Idc : c → c. Then
chasing η ∈ N through red (left-bottom) and blue (top) arrows we get,

ηc = ηc ◦ Idc = Idc ◦ r(η)c.

Since cwas arbitrary η = r(η), and hence N ⊆ A, ergo A = N . �

1.3 Whiskering
Definition 1.3.1. Let G : C → D, F, F ′ : D → M, and K : M→ N be functors. Let η : F ⇒ F ′ be natural
transformation,

C D M NG

F

F ′

Kη

then the left whiskering of η byG is a natural transformation ηG : C →M between functorsF ◦G andF ′◦G,
legs of which is given by (ηG)c : = ηGc. Similarly the right whiskering of η byK is a natural transformation
Kη : D → N between functors K ◦ F and K ◦ F ′, legs of which is given by (Kη)d : = K(ηd). naturality of
ηG andKη follows from naturality of η and functoriality of G andK respectively.
Definition 1.3.2. Let η : F → G and ε : G⇒ K be natural transformations,

C D

F

G

K

η

ε
.

Then the composition ε◦ η : F → K is a natural transformation with is given by (ε◦ η)c = εc ◦ ηc. Naturality
follows from the naturality of ε and η. We will drop the composition ◦ sign and write it as (ε)(η).

Proposition 1.3.3. We will list few properties of whiskering . Consider,

M C D NG

F

F ′

F ′′

K
η

ε
.

Then

1.
(
(ε)(η)

)
G = (εG)(ηG); K

(
(ε)(η)

)
= (Kε)(Kη).

2. K(ηG) = (Kη)G.

3. (ηG)G′ = η(G ◦G′) for any G′ :M′ →M; K ′(Kη) = (K ′ ◦K)η for anyK ′ : N → N ′.

Proof. We will check legs of each natural transformations

1. Form ∈Mwe get,[(
(ε)(η)

)
G
]
m

=
(
(ε)(η)

)
Gm

= εGm ◦ ηGm = (εG)m ◦ (ηG)m =
[
(εG)(ηG)

]
m

Thus
(
(ε)(η)

)
G = (εG)(ηG) and similarly we getK

(
(ε)(η)

)
= (Kε)(Kη).

2. Form ∈Mwe get, [
K(ηG)

]
m

= K
(
(ηG)m

)
= K

(
ηGm

)
= (Kη)Gm =

[
(Kη)G

]
m

ThusK(ηG) = (Kη)G.
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3. Form′ ∈M′ we get, [
(ηG)G′

]
m′

= (ηG)G′m′ = ηGG′m′ =
[
η(G ◦G′)

]′
m

Thus (ηG)G′ = η(G ◦ G′) for any G′ : M′ → M, similarly we get K ′(Kη) = (K ′ ◦ K)η for any
K ′ : N → N ′.

�

Proposition 1.3.4. Let η : F ⇒ F ′ and ε : G⇒ G′ be natural transformations,

C D E
F

F ′

G

G′

η ε

Then (G′η)(εF ) = (εF ′)(Gη). This proposition says that if doing ε first and then η is same as doing η first and then
ε.

Proof. We will check the legs of the transformations,(
(G′η)(εF )

)
c

= (G′η)c ◦ (εF )c

= G′(ηc) ◦ εFc
= εF ′c ◦G(ηc)

= (εF ′)c ◦ (Gη)c

=
(
(εF ′)(Gη)

)
c

Thus (G′η)(εF ) = (εF ′)(Gη). �
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Chapter 2

All Concepts Are Kan Extensions

2.1 Kan extensions
Definition 2.1.1 ( [Rie14], 1.1.1). Given functors F : C → E , K : C → D, a left Kan extension of F along K
is a functor LanKF : D → E together with a natural transformation η : F ⇒ LanKF ◦ K such that for any
other such pair (G : D → E , γ : F ⇒ G ◦K), γ factors uniquely through η. Diagramatically, we have

C E

D

F

K LanKF

η satisfying
C E

D

F

K G

γ !
C E

D

F

K
LanKF

G

η

∃!

Remark 2.1.2 ( [Rie14], 1.1.4). A left Kan extension of F : C → E alongK : C → D is a representation for the
functor

EC(F,− ◦K) : ED → Set

that sends a functor D → E to the set of natural transformations from F to its restriction along K. By the
Yoneda lemma, any pair (G, γ) as in definition 2.1.1 defines a natural transformation

ED(G,−) EC(F,− ◦K)
γ

The universal property of the pair (LankF, η) is equivalent to the assertion that the corresponding map

ED(LanK(F ),−) EC(F,− ◦K)
η

is a natural isomorphism, i.e., that (LanK(F ), η) represents this functor. We conclude that if for a fixed
K, the left and right Kan extensions of any functor exist, then these define left and right adjoints to the
precomposition functorK∗ : ED → EC .

ED(LanKF,G) ∼= EC(F,GK) EC ED
LanK

RanK

K∗ EC(GK,F ) ∼= ED(G,RanKF )

Exercise 2.1.3 ( [Rie14], 1.1.3). Construct a toy example to illustrate that if F factors throughK along some
functor H , it is not necessarily the case that (H, 1F ) is the left Kan extension of F alongK.

Proof. Let G be a group with an outer automorphism σ, such as Z/3Z and the inversion map. We consider
the following commutative diagram in Cat, where i : ∗ → BG is the functor induced by the trivial group
homomorphism:

7



∗ BG

BG

i

i

σ

η
Idi .

Natural transformations η : IdBG → σ are in bijection with elements h of G such that hx = σ(x)h for all
x ∈ G, or equivalently hxh−1 = σ(x). Since σ is outer, the element h does not exist, neither does η, and so
(IdBG, 1i) is not Kan. �

2.2 A formula for Kan extensions
Theorem 2.2.1 ( [Rie14], 1.2.1).When C is small, D is locally small, and E is co-complete, the left Kan extension of
any functor F : C → E along any functorK : C → D is computed at d ∈ D by the colimit

LanKF (d) ∼=
∫ c∈C

D(Kc, d) · Fc (2.2.1)

and in particular necessarily exists.

Exercise 2.2.2 ( [Rie14], 1.2.11). Directed graphs are functors from the category G with two objectsE, V and
a pair ofmaps s, t : E ⇒ V toSet. A natural transformation between two such functors is a graphmorphism.
The forgetful functorDirGph→ Set that maps a graph to its set of vertices is given by restricting along the
functor from the terminal category 1 that picks out the object V . Use 2.2.1 to compute left and right adjoints
to this forgetful functor.

Computation. For a functor X : 1 → Set we write X(•) = X . Let iV be the functor 1 → G, picking out V .
Then we have the following diagram by previous discussion (2.1.2):

Set1 SetG

LaniV ∗

RaniV ∗

U=iV ∗

⊥

⊥

So we can compute these left and right adjoints by computing the left and right Kan extensions which fill
the dashed arrow in :

1 Set

G

X

iV

In particular for a functorX : 1 to Set, there is only one object and one morphism in the domain, the corre-
sponding coends and ends (2.2.1) simplify dramatically. For instance,

LaniV X(V ) ∼=
∫ x∈1

G(iV (x), V ) ·X(x) ∼= coeq

∐
Id•

G(V, V ) ·X ⇒
∐
•
G(V, V ) ·X

 .

Here the top arrow in the last term induces the identity on X and the bottom is composition with Id• on
G(V, V ). Both of these are the identity map, and since G(V, V ) has only one element, the coequalizer which
gives the vertices of LaniV is isomorphic to X . Similarly

LaniV X(E)) ∼=
∫ x∈1

G(iV (x), E) ·X(x) ∼= coeq

∐
Id•

G(V,E) ·X ⇒
∐
•
G(V,E) ·X

 .
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All the sets in this last diagram are empty as G(V,E) = ∅, the coequalizer is as well, and so the set of edges
is empty. In summary, the left adjoint to the forgetful functor assigns to a set X a graph with vertices X
and no edges. The source and target morphisms s, t are forced to be empty, and the left adjoint is thus the
discrete graph functor.
Dually, the right adjoint is computed by

RaniV X(V ) ∼=
∫
x∈1

X(x)G(V,i(V )) ∼= eq
(
X{IdV } ⇒ X{IdV }

)
∼= X

where the last isomorphism comes since both the arrows in the equalizer diagram are the identity, one
induced from the identity on Id• ∈ 1 and one induced from IdV . The computation of RaniV X(E) is broadly
similar:

RaniV X(E) ∼=
∫
x∈1

X(x)G(E,i(V )) ∼= eq
(
XG(E,V ) ⇒ XG(E,V )

)
∼= Xs ×Xt,

as again both arrows are identities (induced from • and E). BothXs andXt are equal toX , we have merely
labeled the two factors. There is no difference between s and t, so it remains to calculate the source arrow
s. We claim s : Xs ×Xt → X is projection onto the Xs factor; by symmetry t will project onto the Xt factor.
By definition, the map RaniV X(s) : XG(E,V ) → XG(V,V ) is induced by cotensoring with s − ◦ : G(V, V ) →
G(E, V ). This is the map Set({s, t}, X)→ Set({IdV }, X) induced by precomposition with s, which projects
onto theXs factor. So the right adjoint to the forgetful functor takes a setX to the chaotic graph onX . This
graph has vertices X and a unique directed arrow between every (ordered) pair of objects. �

Exercise 2.2.3 ( [Rie14], 1.4.8). Use 2.2.1, the Yoneda Lemma, and the coYoneda lemma to deduce another
form of the density theorem: that the left Kan extension of the Yoneda embedding ∆• : C → SetC

op
along

itself is the identity functor. This says that the representable functors form a dense subcategory of the
presheaf category SetC

op
.

Proof. Let F ∈ SetC
op
and c ∈ C. Then by 2.2.1, the Yoneda Lemma, the symmetry of the copower in Set,

and finally the coYoneda lemma, we have (naturally in F, c):

Lan∆•∆
•(F )(c) ∼=

∫ x∈C
SetC

op
(∆x, F ) ·∆x(c) ∼=

∫ x∈C
Fx · C(x, c) ∼=

∫ x∈C
C(x, c) · Fx ∼= Fc .

Every isomorphism here is canonical, so it makes sense to say that Lan∆•∆
•(F ) is F . �

Exercise 2.2.4 ( [Rie14] 1.2.7). Let C be a small category and write C. for the category obtained by adjoining
a terminal object to C. Give three proofs that a left Kan extension of a functor F : C → E along the natural
inclusion C → C. defines a colimit cone under F : one using the defining universal property, one using
Theorem 1.2.1, and one using the formula of 1.2.6.

Proof. We have the following situation in general:

C E

C.

F

i
LaniF

G

η

∃!

1. The defining universal property of the left Kan extension gives that for any functor G and natural
transformation, γ : F ⇒ G ◦ i, we get a unique natural transformation, LaniF ⇒ G. We observe
that the functor G gives the data of a cone under F : the image of the terminal object, G(∗) receives
morphisms from the image of F by F (c) → Gi(c) → G(∗) where the first morphism is γc and the
second morphism is the image of the unique arrow c→ ∗ in C.. In fact, any such cone takes this form,
where the image of ∗ is the nadir of the cone: for a cone under F , set the functor F ′ to agree with F on
all elements in C and send F ′(∗) to the nadir of the cone. The natural transformation F ⇒ Gi is simply
the identity, and the functoriality of F ′ is ensured by the commutativity required by being a cone.
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LetG be the functor corresponding to an arbitrary cone. LaniF also defines a cone under F and there
exists a unique natural transformation, ε : LaniF ⇒ G. Then the morphism ε∗ gives a map of cones
from that of LaniF to the cone definingGwith the commutativity ensured by the naturality of ε. Since
this morphism exists for any cone, we have that the cone under F defined by LaniF is a colimit cone.

2. Theorem 1.2.1 says that:

Lani(F )(x) =

∫ c∈C
C.(i(c), x) · Fc := coeq

 ∐
f :c′→c

C.(i(c), x) · Fc′ ⇒
∐
c∈C
C.(i(c), x) · Fc

 .

Specifically, evaluating at ∗, we get that:

Lani(F )(∗) = coeq

 ∐
f :c′→c

C.(i(c), ∗) · Fc′ ⇒
∐
c∈C
C.(i(c), ∗) · Fc

 .

Further inspection shows that the contravariant f∗ is the identity map, since it maps by the identity
on the component in E and its map on the hom-set is unique up to isomorphism, since ∗ is a terminal
element in the category. Thus, we can write:

Lani(F )(∗) = coeq {F (f) : F (c)→ F (c′) : f ∈ arr(C)} .

That is, Lani(F )(∗) is the coequalizer of the image of F . This is an alternative definition of the colimit
cone under F.

3. We again consider the universal property that Lani(F )(∗) must satisfy. Specifically, it is isomorphic to
the colimit of the composition,

i(C)/∗ U→ C F→ E .

In our case, i(C)/∗ is isomorphic to C, since it contains all of the morphisms of C (all of the new com-
position triangles will automatically commute by the universal property of the terminal object) and
all of the objects (each object in i(C)/∗ is the unique morphism c→ ∗, which maps by U to c).
So the map U is an isomorphism, and the resulting colimit is consequently isomorphic to colimF :
C → E , as desired.

�

Exercise 2.2.5 ( [Rie14] 1.4.3). If F : C � D : G is an adjunctionwith unit η : 1⇒ GF and counit ε : FG⇒ 1,
then (G, η) is a left Kan extension of the identity functor at C along F and (F, ε) is a right Kan extension of
the identity functor at D along G. Conversely, if (G, η) is a left Kan extension of the identity along F and F
preserves this Kan extension, then F a Gwith unit η.

Proof. We use the fact that we are given that an adjunction F a G gives an adjunction between G∗ a F ∗1.
Recall that left and right Kan extensions along a functor, F , define left and right adjoints to the precomposi-
tion functor F ∗. Thus, if we consider the precomposition adjunction we get from picking the base category
to be D, we get the diagram:

DC DD

F∗

G∗

⊥

And by the uniqueness of adjoints (since the left Kan extension along F would also define a left adjoint to
F ∗), everything in the image ofG∗ is a left Kan extension alongF . Thus, wehaveLanF (IdD) = G∗(IdD) = G.
Furthermore, if the precomposition adjunction has unit H : IdDD ⇒ F ∗G∗ = (GF )∗, then the leg cor-
responding to IdD is the natural transformation, η : IdD ⇒ (GF )∗(IdD) = GF that defined the initial

1The verification of the relevant triangle identities follows by whiskering the relevant functors and natural transformations on the
right of the diagram for the original triangle identities.
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adjunction. So (G, η) is the object in the image of IdD by G, the left adjoint of F ∗, and is thus the Left Kan
extension of IdD along F . A dual argument gives that (F, ε) is the appropriate right Kan extension.

On the other hand, if (G, η) = LanF (IdD), and F preserves this Kan extension, we have that (FG,Fη) =
LanF (F ). To show that this is enough data to give an adjunction between F and G, we derive the counit
through the universal property of the left Kan extension, LanF (F ) = FG. Note that we have the natural
transformation IdF : F ⇒ IdDF given by ϕc = IdFc. Thus, the universal property of the left Kan extension
gives a (unique) natural transformation, ε : IdD ⇒ FG such that Fη ◦ εF = IdF .

It suffices to show that these natural transformations satisfy the triangle identities necessary to form an
adjunction. That is, εF ◦ Fη = IdF and Gε ◦ Gη = IdG. The first identity follows immediately from the
construction of ε, since ε is the unique natural transformation such that the composition Fη ◦ εF = IdF .

We next verify IdG = Gε ◦ ηG. The uniqueness condition of the universal property of the Kan extension
G implies this equality is equivalent to IdGF ◦ η = (Gε ◦ ηG)F ◦ η. We verify this latter equation by straight-
forward algebraic manipulation appealing to the properties of whiskering 1.3.3, the interchange law 1.3.4,
and the triangle equation for F :

(Gε ◦ ηG)F ◦ η = GεF ◦ ηGF ◦ η = GεF ◦GFη ◦ η = G(εF ◦ Fη) ◦ η = G(IdF ) ◦ η = IdGF ◦ η

�

2.3 Geometric Realization
Construction 2.3.1 ( [Rie14], 1.5.1, Generalized). Let C be any small category, D be any locally small cate-
gory, and letK : C → D be a fully faithful functor. Let E be any co-complete, locally small category, let and
let F : C → E be any contravariant functor. Define L : D → E to be the left Kan extension of F alongK.

D

C E

LK

F

.

Because E is assumed to be cocomplete, C to be small and D to be locally small, the functor L is defined on
objects by the coend 2.2.1

Ld :=

∫ c∈C
D(Kc, d) · Fc =

∫ c∈C
D(Kc, d) · Fc ∼= coeq

 ∐
f :c→c′

D(Kc′, d) · Fc⇒
∐
c∈C
D(Kc, d) · Fc

 .

The functor L on arrows is defined by universal property of these colimits. The uniqueness property from
the universal property will imply that L is functorial. Since K is fully faithful, LK ∼= F [Rie14, 1.4.5].
Because L is defined by a colimit and colimits commute with each other, L preserves colimits. Now since
D is small and L is co-continuous, the Adjoint Functor Theorem ( [Rie17, 4.6.1]) implies L admits a right
adjoint R : E → D.
Now let D = SetC

op
, andK defined byK(c) = C(−, c). Then from the Yoneda lemma and L a R we get,

(Re)(c) ∼= SetC
op

(C(−, c), Re) ∼= E(LK(c), e) ∼= E(F (c), e).

With the help of this isomorphism we now define R : E → SetC
op
on objects as (Re)(c) = E(F (c), e), and on

morphisms by
(Re)(f : c→ c′) = E(F (f), e) : (Re)(c′)→ (Re)(c).

Then, (R(g : e → e′)) : Re ⇒ Re′ is defined by (R(g : e → e′))c = E(Fc, g). This is indeed a natural
transformation, since

E(Fc, g) ◦ E(Ff, e) = E(Ff, e′) ◦ E(Fc′, g).

This makes R into a functor.

11



Definition 2.3.2 ( [Rie14], 1.5.3). In the above construction let C = M, D = SetM
op

and K = ∆•. Let
E = Top, then there is a natural functor F : M→ Top such that Fn is the standard topological n− simplex,

Fn :=

{
(x0, . . . , xn) ∈ Rn+1

∣∣∣∣∣xi ≥ 0,
∑
i

xi = 1

}

with the subspace topology. Then the functor L : sSet → Top is called the geometric realization functor.
From the above prescription |·| := L : sSet→ Top is defined at a simplicial set X by

|X| =
∫ n

Xn ×∆n = colim

 ∐
f :[n]→[m]

Xm ×∆n ⇒
∐
[n]

Xn ×∆n


and the associated right adjoint R : Top→ sSet is called the total singular complex functor.

Exercise 2.3.3 ( [Rie14], 1.5.4). Prove that geometric realization is left adjoint to the singular complex functor
by demonstrating this fact for any adjunction arising from the construction of [Rie14, 1.5.1]

Proof. This is a special case of the construction 2.3.1. �

2.4 Day Convolution
We encountered the Day Convolution as an important example of a Kan extension (used in the construction
of a symmetric monoidal structure on the category of spectra), which motivated the problem following this
section.
Definition 2.4.1. (n-lab) Let C be a complete, co-complete, closed, small V -enrichedmonoidal category (we
will mostly deal with V = Vectk, i.e C is a small linear category) Let F,G be enriched functors C → V , and
define the external tensor product

⊗ : [C, V ]× [C, V ]→ [C × C, V ]

by
(X⊗Y )(c1, c2) := X(c1)⊗V Y (c2)

Then the Day Convolution of F and G is defined to be the left Kan extension:

C × C V

C

F⊗G

⊗ F⊗DayG

η

Problem. Let G be a finite group, ω a 3-cocycle, and C = RepωG be the twisted represention category over a
field k of characteristic coprime to G. The set of enriched functors C → Vectk (up to natural isomorphism)
has a multiplication given by Day convolution.

• The natural transformation η in the previous diagram is not specified in the n-lab. What is it?

• Let k = C, ω = 1 and ι : RepG → VectC be the natural inclusion. What is the tensor product ι⊗Day ι?

• Can we compute the ring structure on the functors RepωG → VectC? Is this a “classical" invariant of
G if ω = 1?

• What if G is (compact) topological and everything in sight is required to be continuous?

Note: It seems like the coend formula defining the Day convolution should simplify significantly, perhaps
just to the colimit over the generating simple objects in any semisimple category.
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Chapter 3

Derived Functors via Deformations

3.1 Weak Equivalences and Homotopy Categories
Definition 3.1.1 ( [Rie14], 2.1.1). A homotopical category is a categoryM equipped with a wide (lluf)
subcategoryW such that for any composable triple of

• •

• •

W3gf

f

hgf

hg∈Wg

h

⇒ f, g, h, hgf ∈ W

if hg and gf are inW so are f, g, h, hgf .
The arrows inW are called weak equivalences; above condition is called 2-of-6 property.

Definition 3.1.2 (n-lab). Let C be a category and W ⊂ mor(C). A localization of C by W is a category
C[W−1] and a functor Q : C → C[W−1] such that:

1. for all w ∈W , Q(W ) is an isomorphism;

2. for any category E and any functor F : C → E such that F (w) is an isomorphism for all w ∈ W , there
exists a functor FW : C[W−1]→ A and a natural isomrphism F ∼= FW ◦Q;

3. the map between functor categories

Q∗ = − ◦Q : AC[W
−1] → AC

is full and faithful for every category A.

Note that: if C[W−1] exists then it is unique up to equivalence.

Notation 3.1.3. Riehl typically uses a γ or δ for the localization functor. We will instead use capital Roman
letters (with the same letter as their domain) instead of lowercase Greek. This way our notation is consistent
in the sense that script letters are typically categories, capital Roman letters are typically functors, and low-
ercase Greek letters are almost always natural transformations. Hopefully, this helps avoid compositions
that don’t typecheck.
Definition 3.1.4 ( [Rie14], 2.1.6). The homotopy category HoM of a homotopical category (M,W) is the
formal localization ofM at the subcategory W . That is given any functor F : M → C that maps weak
equivalences to isomorphisms, which we call homotopical, there is a functor F : HoM → C such that

13



following diagram commutes.
M C

HoM

F

M F

The functor F is unique up to natural isomorphism.

Lemma ( [Rie14], 2.1.10). LetM be a category equippedwith any collection of arrowsW . If the localizationHoM :=
M[W−1] is saturated, thenW satisfies the 2-of-6 property.

Proof. Suppose we have morphisms f, g, h ofM with • • • •f g h and gf, hg ∈ W . LetM be the
localization functor. Then the diagrams

• •

• •

gf

f

hgf

hgg

h

and

• •

• •

M(gf)

M(f)

M(hgf)

M(hg)M(g)

M(h)

are commutative, andM(fg),M(gh) are isomorphisms. Since the isomorphisms in any category satisfy 2-
of-6 ( [Rie14], 2.1.4), the morphisms M(f),M(g),M(h) and M(hgf) are isomorphisms. By the definition
of saturation f, g, h, hgf ∈ W . SoW satisfies 2-of-6, as desired. �

3.2 Derived functors
Definition 3.2.1 ( [Rie14], 2.1.17). A total left derived functor LF of a functor F between homotopical
categories C and D is a right Kan extension RanCDF

C D

HoC HoD

F

C D

LF

where C and D are the localization functors for C and D.
Definition 3.2.2 ( [Rie14], 2.1.19). A left derived functor of F : C → D is a homotopical functorLF : C → D
equipped with a natural transformation λ : LF ⇒ F such thatD · λ : D ◦ LF ⇒ D ◦ F is a total left derived
functor of F .
Definition 3.2.3 ( [Rie14], 2.2.1). A left deformation on a homotopical category C consists of an endofunctor
Q together with a natural weak equivalence q : Q

∼⇒ 1.
Definition 3.2.4. A left deformation for a functor F : C → D between homotopical categories consists of a
left deformation for C such that F is homotopical on an associated subcategory of cofibrant objects. When
F admits a left deformation, we say that F is left deformable.

Theorem 3.2.5 ( [Dwy05], 41.2-5). If F : C → D has a left deformation, q : Q
∼⇒ 1, then LF = FQ is a left derived

functor of F .

Proof. Let C andD be as in 3.2.1. To show that FQ is a left derived functor, it is sufficient to show thatDFQ
is a total left derived functor with the natural transformation DFq : DFQ⇒ DF .

Note that it is reasonable to call DFQ : C → HoD a total left derived functor because of the following
reasoning: Since F has a left deformation, Q, it is homotopical onMQ, since Q is necessarily homotopical,
FQ is homotopical, so is DFQ. Then by the 2-Categorical Universal Property of the localization functor C,
homotopical functors and natural transformations between them, DFq : DFQ ⇒ DF are in bijection with
the functors and natural transformations induced byC,DFq : DFQ⇒ DF . Thus, we can prove the desired
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condition for the functors from C, since the “actual” condition will be met if and only if the one with C is a
domain is.

Thus we need to show that for any homotopical functor, G : C → HoD, and a natural transformation,
α : G ⇒ DF , there exists a unique natural transformation, η : G ⇒ DFQ. We note that again by the corre-
spondence from the last paragraph,Gmust be homotopical, since it is also induces a functor on HoC, which
automatically preserves isomorphisms, and is thus homotopical to HoD, and the bijection from C is on ho-
motopical functors. Next we note that the whiskered natural weak equivalence Gq : GQ⇒ G is actually an
isomorphism, since G is homotopical with target HoD (where all weak equivalences are isomorphisms).

We suggest the composition of two-cells, (αQ)◦(Gq−1). SinceGqwas a natural isomorphism this is awell-
defined natural transformation. We now need to check that this natural transformation fits the 2-Categorical
condition of the Kan extension. I.e. the following diagram of natural transformations commutes:

G DFQ

DF

(αQ)◦(Gq−1)

α
DFq

This follows from the interchange law, since the natural transformations are occurring separately:

(DFq) ◦ (αQ) ◦ (Gq)−1 = (DFq) ◦ (DFq−1) ◦ α = α.

Which is the desired property. �

Exercise 3.2.6 ( [Rie14], 2.2.15). Suppose F a G is an adjunction between homotopical categories and sup-
pose also that F has a total left derived functor (LF, α), G has a total right derived functor (RG, β) and
both derived functors are absolute Kan extensions. Show that LF a RG. That is, show the total derived
functors form an adjunction between the homotopy categories, regardless of how these functors may have
been constructed.

Proof. Step I: Finding unit/ co-unit for LF a RG.
Let η : F ◦G⇒ 1D and ε : 1C ⇒ G ◦ F be units and co-units of F a G adjunction. Then we have adjunction
equations

(εF )(Fη) = 1F and (Gε)(ηG) = 1G.

The following master diagram is helpful in tracking all functors and natural transformations:

C D C D

HoC HoD HoC HoD

F

1C

C

G

1D

D

F

C D

LF

1HoC

RG

1HoD

LF

η ε

η ε

α β α .

Using that RG is an absolute Kan extension we get,

C HoD HoC

HoC

D◦F

C

RG

LF
α =⇒

C HoC

HoC

RG◦D◦F

C RG◦LF
RGα

to be a Kan extension. Now consider

γ = (βF )(Cη) : 1HoC ◦ C = C
Cη
=⇒ C ◦G ◦ F βF

==⇒ RG ◦D ◦ F
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Then from the universal property of theKan extension, there is a (unique) natural transformation η : 1HoC ⇒
RG ◦ LF such that,

(RGα)(ηC) = (βF )(Cη).

Similarly we get ε : LF ◦ RG⇒ 1HoD such that,

(εD)(LFβ) = (Dε)(αG)

Step II: Checking unit/ co-unit equations for LF a RG.
We need to show that

(RG ε)(η RG) = 1RG and (ε LF )(LF η) = 1LF

For the first equation we will use the following Kan extension,

D HoC

HoD

C◦G

D RG
β .

We claim that
[(RG ε)(η RG)D](β) = β

Then from the universal property of Kan extensions, we get (RG ε)(η RG) = 1RG. The claim is true from
following chain of equalities ( [Mal07]),[(

(RG ε)(η RG)
)
D
](
β
)

=
(
RG ε D

)(
η (RG ◦D)

)(
β
)

(1)

=
(
RG ε D

)(
(RG ◦ LF )β

)(
η (C ◦G)

)
(2)

=
[
RG
(
(ε D)(LF β)

)](
η (C ◦G)

)
(3)

=
[
RG
(
(D ε)(α G)

)](
η (C ◦G)

)
(4)

=
(
(RG ◦D) ε

)(
RG α G

)(
η (C ◦G)

)
(5)

=
(
(RG ◦D) ε

)[(
(RG α)(η C)

)
G
]

(6)

=
(
(RG ◦D) ε

)[(
(β F )(C η)

)
G
]

(7)

=
(
(RG ◦D) ε

)(
β (F ◦G)

)(
C η G

)
(8)

=
(
β
)(

(C ◦G) ε
)(
C η G

)
(9)

=
(
β
)[
C
(
(G ε)(η G)

)]
(10)

= β (11)

Here equalities 1, 3, 5, 6, 8, and 10 are appropriate whiskering properties listed at proposition 1.3.3. Equali-
ties 2 and 9 are from proposition 1.3.4. Equalities 4 and 7 are defining equations of ε and η respectively. And
the last equality is unit-co-unit equation.
Thus we get (RG ε)(η RG) = 1RG. Similarly we get (ε LF )(LF η) = 1LF . Hence LF a RG. �
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Chapter 4

Basic Concepts of Enriched Category
Theory

4.1 Enriched Categories
Definition 4.1.1 ( [ML13]). AMonoidalCategory (V,×, ∗) is a category, V and a bifunctor−×− : V×V → V
called themonoidal product, and ∗ ∈ V , the unit object such that the following properties hold:

1. There exist natural isomorphisms between functors:

a× (b× c) ∼=α (a× b)× c ∗ ×a ∼=λ a ∼=ρ a× ∗.

2. And the associater satisfies the following compatibility condition:

a× (b× (c× d)) (a× b)× (c× d) ((a× b)× c)× d

a× ((b× c)× d) (a× (b× c))× d

αcd

Ida·α

αab

α·Idd

αbc

3. While the left and right unitors satisfy the following two conditions:
This diagram commutes exactly,

a× (∗ × b) (a× ∗)× b

a× b

α

Ida·λ ρ·Idb

and the unit object components of ρ and λ are the same:

λ∗ = ρ∗ : ∗ × ∗ → ∗.

Definition 4.1.2 ( [ML13]). A braiding, γ, is a natural isomorphism,

a× b ∼=γ b× a

which is compatible with the left and right unitors:

a× ∗ ∗ × a

a

γ

ρ
λ
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and is compatible with the associater on the following hexagonal conditions:

(a× b)× c c× (a× b)

a× (b× c) (c× a)× b

a× (c× b) (a× c)× b

γab

α−1 α

Idaγ γIdb

α

There is another hexagon, but for the case of a symmetric monoidal category, it is implied by this hexagon.
Definition 4.1.3 ( [ML13]). A monoidal category is symmetric if it has a braiding γ such that

a× b b× a

a× b
Ida×b

γ

γ

Definition 4.1.4 ( [Rie14], 3.3.1). For a symmetric monoidal category (V,×, ∗), a V-category D consists of

1. a collection of objects x, y, z ∈ D,

2. for each pair x, y ∈ D, a hom-object D(x, y) ∈ V ,

3. for each x ∈ D, a morphism Idx : ∗ → D(x, x) in V ,

4. and for each triple x, y, z ∈ D, a morphism ◦ : D(y, z) × D(x, y) → D(x, z) in V such that following
diagrams commute for all x, y, z, w ∈ D:

D(z, w)×D(y, z)×D(x, y) D(z, w)×D(x, z)

D(y, w)×D(x, y) D(x,w)

1×◦

◦×1 ◦

◦

D(x, y)× ∗ D(x, y)×D(x, x)

D(x, y)

1×Idx

∼=
◦

D(y, y)×D(x, y) ∗ × D(x, y)

D(x, y).

◦

Idy×1

∼=

Here the indicated isomorphisms are the maps defined in 4.1.1.

Definition 4.1.5 ( [Rie14], 3.3.6). A (symmetric) monoidal category V is called a closed monoidal cate-
gory when each functor − × v : V → V admits a right adjoint V(v,−) , the right adjoints in this family of
parametrized adjunctions assemble in a unique way into a bifunctor

V(−,−) : Vop × V → V

such that there exists isomorphisms

V(u× v, w) ∼= V(u,V(v, w)) ∀u, v, w ∈ V

natural in all three variables.
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4.2 Underlying categories of enriched categories
Definition 4.2.1 ( [Rie14], 3.4.4, 3.4.5). The underlying category C0 of a V-category C has the same objects
and has hom-sets

C0(x, y) := V(∗, C(x, y)).

We define the identities Idx ∈ C0(x, x) to be the specified morphisms Idx ∈ V(∗, C(x, x)). Composition is
defined hom-wise by the following dashed arrow in Set:

C0(y, z)× C0(x, y) C0(x, z)

V(∗, C(x, y))× V(∗, C(x, y)) V(∗, C(y, z)× C(x, y)) V(∗, C(x, y))

The first arrow in the bottom row is the natural morphism (from [Rie14], 3.4.4) V(∗, u) × V(∗, w) defined
by precomposing f × g with the natural isomorphism ∗ ∼= ∗ × ∗. The second is V(∗,−) applied to the
composition morphism for C.
Exercise 4.2.2 ( [Rie14], 3.4.13). Let D be a V−category and ∗ D(y, z)

g be an arrow in D0. Using g
define for any x ∈ D

g∗ : D(x, y) ∼= ∗ × D(x, y) D(y, z)×D(x, y) D(x, z).
g×1 ◦

This construction defines an (unenriched) representable functor

D(x,−) : D0 → V

Show the composite of this functor with the underlying set functor V(∗,−) : V → Set is the representable
functor D0(x,−) : D0 → Set for the underlying category D0.

Proof. Define D(x,−) : D0 → V by D(x,−)(y) = D(x, y) on objects and D(x,−)(g : ∗ → D(y, z)) = g∗ :
D(x, y)→ D(x, z). For simplicity we will write g∗ = (− ◦ −)(g × 1) =: g ◦ 1. Let h : ∗ → D(z, w) be another
arrow in D0 then, hg = (− ◦ −)(h × 1) = h ◦ g. Functoriality follows from the associativity in the enriched
category D,

D(x, y)

∗ × ∗ × D(x, y)

∗ × D(y, z)×D(x, y) D(z, w)×D(y, z)×D(x, y) D(y, w)×D(x, y)

∗ × D(x, z) D(z, w)×D(x, z) D(x,w)

∼=

1×g×1
h×g×1

h×1×1

1×◦ 1×◦

◦×1

◦

h×1 ◦

.

Here top-left triangle and bottom left rectangle commutes since the operations are in different co-ordinates.
Bottom right rectangle is associativity inD. Orange (left composition) and red (bottom composition) arrows
are g∗ and h∗ respectively, together they are h∗g∗. Whereas the blue (right composition) arrows are (hg)∗.
Thus (hg)∗ = h∗g∗. Thus D(x,−) is a functor.
Now let F : D0 → Set be F = V(∗,−) ◦ D(x,−). Then on objects,

F (y) = V(∗,D(x, y)) = D0(x, y).
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Let g : y → z be an arrow in D0, that is g : ∗ → D(y, z). Let h : x→ y ∈ D0(x, y), that is h : ∗ → D(x, y), then
we have

∗ ∼= ∗ × ∗

∗ × D(x, y) D(y, z)×D(x, y) D(x, z)

g×h
1×h

g×1 ◦

.

The diagram commutes since operations take place in different co-ordinates. Blue (diagonal) arrow with
composition arrow is post-compositon by g, and red (left bottom) arrows with composition is postcompo-
sition by g∗, thus

D0(x, g)(h) = V(∗, g∗)(h) = V(∗,D(x, g))(h) = F (g)(h)

Thus F = D0(x,−). �

Exercise 4.2.3 ( [Rie14], 3.5.3). Extend Definition 4.2.1 (of Underlying Category) to define the underlying
functor of a V-Functor and show that your definition is functorial. i.e. it defines a functor

(−)0 : V-Cat→ Cat.

Proof. Suppose that F : C → D is a V-Functor. Then, we define the underlying functor, (F )0 = F : C → D to
be the same on objects asF . WedefineF onmorphisms by taking f ∈ C(x, y) = V(∗, C(x, y)) toV(∗, Fx,y)(f).
It remains to show that F is a functor. Suppose that f ∈ C(x, y), g ∈ C(y, z) so that gf ∈ C(x, z). Then
F (gf) = F (g)F (f) by applying the functor V(∗,−) to the diagram defining a V-functor:

C(y, z)× C(x, y) C(x, z)

D(Fy, Fz)×D(Fx, Fy) D(Fx, Fz)

V(∗, C(y, z)× C(x, y)) V(∗, C(x, z)) =: C(x, z)

V(∗,D(Fy, Fz)×D(Fx, Fy)) V(∗,D(Fx, Fz)) =: D(Fx, Fz)

◦

Fy,z×Fx,y Fx,z

◦

◦

V(∗,Fy,z×Fx,y) V(∗,Fx,z)

◦

V(∗,−)

By functoriality of the hom-functor, the latter square also commutes.
The top path applied to (g× f) ∈ V(∗, C(y, z)×C(x, y)) is the definition of F (gf) := V(∗, Fx,z)(gf) while

the bottom path gives:
V(∗, Fy,z)(g) ◦ V(∗, Fx,y)(f) =: F (g)F (f).

So the commutativity gives that F preserves arrow composition.
The identity condition is similarly satisfied by applying V(∗,−) to the identity triangle in the definition

of a V-functor. Thus, we have that F is a functor.
Functoriality of the map (−)0 : V-Cat → Cat follows from functoriality of V(∗,−). If F : C → D and

G : D → E , then their composition is definedpointwise as (GF )x,y = GFx,FyFx,y . Thus, we get thatV(∗, GF )
is defined on hom-sets as V(∗, GFx,Fy◦Fx,y) = V(∗, GFx,Fy)◦V(∗, Fx,y) by the functoriality of V(∗,−). Thus,
the underlying functor of GF is the same on morphisms and objects as the composition of the underlying
functors F and G, so the underlying functor map is functorial. �

Proposition 4.2.4 ( [Rie14], 3.5.12). The following are equivalent:

(i) x, y ∈ C are isomorphic as objects of C.

(ii) the representable functors C(x,−), C(y,−) : C ⇒ Set are naturally isomorphic

(iii) the unenriched representable functors C(x,−), C(y,−) : C ⇒ V are naturally isomorphic

(iv) the representable V-functors C(x,−), C(y,−) : C ⇒ V are V-isomorphic
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Exercise 4.2.5 ( [Rie14], 3.5.12). Prove (i)⇒ (iv) above.

Proof. First note that C := (C)0. Now let f ∈ C(x, y) := V(∗, C(x, y)) where f is an isomorphism. Thus
f : ∗ → C(x, y), let g : ∗ → C(y, x) be its inverse. We need to define a V−natural transformation α :
C(x,−)⇒ C(y,−). For arbitrary but fixed u ∈ C let αu be following composition,

αu : C(x, u) ∼= C(x, u)× ∗ C(x, u)× C(y, x) C(y, u)
1×g ◦ .

Similarly let βu be following composition,

βu : C(y, u) ∼= C(y, u)× ∗ C(y, u)× C(x, y) C(x, u)
1×f ◦ .

Now consider following diagram,

C(x, u)× ∗ × ∗ C(x, u)× C(y, x)× ∗ C(x, u)× C(y, x)× C(x, y) C(x, u)× C(x, x)

C(y, u)× ∗ C(y, u)× C(x, y) C(x, u)

1×g×1

◦×1

1×1×f 1×◦

◦×1 ◦

1×f ◦

.

The first square commutes since the operations take place independently, the second square is associatiativ-
ity square. Here red (left composition) arrows is αu and blue (bottom composition) arrows is βu whereas
green (top right composition) arrows precomposedwith 1×g×1 is identity since g◦f = 1. Thus βu◦αu = 1.
Similarly we can show that αu ◦ βu = 1. Thus αu is an isomorphism for each u ∈ C. Now to show that α
is an natural transformation we need to show that the following diagram on the left commutes. Since V is
closed monoidal we get that the left hand side diagram commutes if and only if right hand side diagram
commutes.

C(u, v) V(C(x, u), C(x, v))

V(C(y, u), C(y, v)) V(C(x, u), C(y, v))

(αv)∗

α∗u

⇐⇒
C(u, v)× C(x, u) C(x, v)

C(u, v)× C(y, u) C(y, v)

◦

1×αu αv

◦

To see that the right hand side diagram commutes consider following diagram,

C(u, v)× C(x, u) C(x, v)

C(u, v)× C(x, u)× ∗ C(x, v)× ∗

C(u, v)× C(x, u)× C(y, x) C(x, v)× C(y, x)

C(u, v)× C(y, u) C(y, v)

◦

1×∼= ∼=

◦×1

1×1×g 1×g

◦×1

1×◦ ◦

◦

.

Here top and middle square commutes from the properties of composition. The red (left side composition)
arrows are 1×αu and blue (left side composition) arrows are αv . Hence α is an natural isomorphism, which
makes the representable V-functors C(x,−), C(y,−) : C ⇒ V , V-isomorphic. �

4.3 Tensors and cotensors
Proposition 4.3.1 ( [Rie14], 3.7.10). SupposeM and N are tensored and cotensored and we have an adjunction
between the underlying categories, V-categories and F : M� N : G. Then the data of any of the following determines
the other
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(i) A V-adjunction N (Fm,n) ∼=M(m,Gn).

(ii) A V-functor F together with natural isomorphisms F (v ⊗m) ∼= v ⊗ Fm

(iii) a V-functor G together with natural isomorphisms G(nv) ∼= G(n)v

Proof. We first observe that the desired equivalence of data between (i) and (iii) is immediate from that of
(i) and (ii) by passing to the opposite categories.

Given a V-adjunction N (Fm,n) ∼=M(m,Gn), the desired functor is a part of the adjunction. The natu-
rality of the adjunction and the tensor products give the natural isomorphisms

N (F (v ⊗m), n) ∼=M(v ⊗m,Gn) ∼=M(v,M(m,Gn)) ∼=M(v,N (Fm,n)) ∼= N (v ⊗ Fm,n),

so that F (v ⊗m) ∼= v ⊗ Fm. For the other direction, the first step is thus to find a sequence of natural maps
N (x, y)→M(Gx,Gy). The given functorG on underlying categories gives the assignments x 7→ Gx as well
as a natural map V(∗,N (x, y))→ V(∗,N (Gx,Gy)).

Then we have the following sequence of natural transformations

V(v,N (x, y)) ∼= V(∗,N (x, yv))

G−→ V(∗,M(Gx,G(yv))
∼= V(∗,N (FGx, yv))
∼= V(v,N (FGx, y))
∼= V(v ⊗ FGx, y)
∼= V(F (v ⊗Gx), y)
∼= V(∗,N (F (v ⊗Gx), y))
∼= V(∗,M(v ⊗Gx,Gy))
∼= V(v,M(Gx,Gy)).

Since V = V , this sequence corresponds (naturally in x and y) to a morphism N (x, y) →M(Gx,Gy) in V
by the Yoneda Lemma. So G extends to a functor. �

Exercise 4.3.2 ( [Rie14], 3.7.18). LetM be cocomplete. Show that the categoryMMop of simplicial objects
inM is simplicially enriched and tensored, with (K ⊗X)n := Kn ·Xn defined using the copower. Give a
formal argument whyMM is simplicially enriched and cotensored ifM is complete.

Proof. Initially we struggled to prove this, but we found help in the stack exchange answer of Eric Wofsey
[Wof16]. We added some omitted pieces of the argument, andmake some commentary while providing his
(seemingly canonical/well-known) solution.

We need to assign to each pair of simplicial objects inMMop a simplicial set that is compatible with the
tensor product defined above:

MM
op

(X ⊗A,B) ∼= sSet(X,MM
op

(A,B))

Taking X to be representable, this becomes:

MM
op

(∆n ⊗A,B) ∼= sSet(∆n,MM
op

(A,B)) ∼= (MM
op

(A,B))n.

So, if this tensoring is possible, we need to defineMMop
(A,B) to be the set of natural transformations be-

tween ∆n ⊗A and B.
To see that this defines a simplicial set, we note that hom and tensoring with A are both functorial, so a

morphism in ∆op is induced functorially from our definition.
A few things that need to be checked are:

1. For each A ∈MMop , a morphism IdA : ∗ →MM
op

(A,A).

2. For each A,B,C, a morphism, ◦ :MM
op

(B,C)×MM
op

(A,B)→MM
op

(A,C)
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3. The compatibility conditions.

We will not check all of them, since that would involve an incredible amount of typing. However, we offer
definitions for 1. and 2. derived in the categorical manner that makes it believable that 3. would hold.

Recall that the monoidal unit in sSet has one degenerate simplex in each dimension made of repeating
the single point however many times. Thus, it has a canonical injection into the simplicial setMM

op
(A,A).

For the composition, we write out:

(MM
op

(B,C))n ∼=MM
op

(∆n ⊗B,C)

But we recall that the definition of ∆n ⊗ B was given levelwise as the copower, which is a coproduct over
copies of B. Thus, a natural transformation ∆n ⊗ B ⇒ C particularly induces a natural transformation
B ⇒ C. So, we have can just define the composition map (level-wise) as the composition of the natural
transformations (taking the induced natural transformation in the first set) in:

MM
op

(∆n ⊗B,C)×MM
op

(∆n ⊗A,B)→MM
op

(B,C)×MM
op

(∆n ⊗A,B)→MM
op

(∆n ⊗A,C).

From these definitions, one can believe that the compatibility conditions will be satisfied.
Note that we still need to verify that the tensoring and enrichment are consistent over all of sSet not just

the representable functors. However, this follows from taking colimits and continuity of hom, so indeed, we
see that the tensoring and enrichment are consistent for all objects in sSet.

Finally, to examine some generalizations, we note that we only needed cocompleteness ofM to define the
copowers, and that this is the only condition that we need to define an enrichment over sSet. In particular,
one could use the representables of any functor category into Set to generate an enrichment in this way.
Further, since all functor categories to Set satisfy the density theorem, this construction does not depend at
all on ∆op, but rather just taking any category of presheaves into Set.

The dual of this result shows thatMM is simplicially enriched and cotensored ifM is complete.
�
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Chapter 5

Homotopy Colimits

5.1 First computations
Definition 5.1.1 ( [Rie14], 4.1.1). LetM be a V-tensored category where−⊗− : V ×M→M is the tensor.
Let D be any category and let F : D → M and g : Dop → V be functors. The functor tensor product of F
with G is the coend of G⊗ F := (−⊗−) ◦ (G,F ) : Dop ×D →M.

G⊗D F :=

∫ D
G⊗ F.

Now recall from the definition of coend 1.2.3, this is a pair (
∫ D

G⊗ F, τ) where
∫ D

G⊗ F is an object inM
and τ is a dinatural transformation from H to constant functor at

∫ D
G ⊗ F such that if (E, ν) is any other

such pair we get unique morphism from
∫ D

G⊗ F to E satisfying,

Gd′ ⊗ Fd Gd⊗ Fd

Gd′ ⊗ Fd′
∫ D

G⊗ F

E

f∗:=Gf⊗Fd

f∗:=Gd
′⊗Ff τd

νd

τd′

νd′

∃!

Now one notices that the above coend is nothing but the co-equalizer,

G⊗D F = coeq

( ∐
f :d→d′ Gd

′ ⊗ Fd
∐
dGd⊗ Fd

f∗

f∗

)
Functor tensor products are useful (and generally computable), and later the goal will be to reduce the

following “fattened up" version of the functor tensor product to something skinnier and computable.
Exercise 5.1.2 ( [Rie14], 4.1.8, modified slightly). Let X = X−• : Mop × Mop → Top be a bisimplicial set.
Compute |X|.

Claim. We claim the following objects are all isomorphic:

• The functor tensor product of X with the Yoneda embedding.

• There are two different ways to think of |X| as a simplicial object in sTop by currying, which have
their own iterated geometric realizations.

• If D : M→ M× M is the diagonal functor, XD is a simplicial set with its geometric realization |XD|.
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Computation. First, we compute Lan∆(∆•), the left Kan extension of the Yoneda embedding along the diag-
onal functor, D : M→ M× M:

Lan∆(∆•)([m], [n]) ∼= M× M(D−, ([m], [n]))⊗M ∆•

∼=
∫ [k]∈M

M× M(([k], [k]), ([m], [n])) ·∆k

∼=
∫ [k]∈M

(M([k], [m])× M([k], [n])) ·∆k

∼=
∫ [k]∈M

(M([k], [m]) ·∆k)× (M([k], [n]) ·∆k)

∼=
∫ [k]∈M

(M([k], [m]) ·∆k)×
∫ [k]∈M

(M([k], [n]) ·∆k)

∼= ∆m ×∆n,

which is the Yoneda embedding ∆×∆ from M× M→ TopM×M. �

Proof. The isomorphism between the objects of 1) and 3) follows from a general lemma concerningweighted
colimits. More precisely: The geometric realization ofX is the colimit ofX weighted by the Yoneda embed-
ding ∆. Then by 6.2.4 and the above computation respectively,

|XD| ∼= colim∆XD ∼= colimLanD∆X ∼= colim∆×∆X ∼= |X|.

The equivalence of 1) and 2) really follows from just the Fubini theorem, but we will be more explicit
than is perhaps needed. Currying gives an isomorphism

Fun(Mop × Mop,Top) ∼= Fun(Mop,Fun(Mop,Top),

and then we can take iterated geometric realization to get a map:

Ψ(X) := Fun(Mop,Fun(Mop,Top)
X 7→|−|◦X−−−−−−−→ Fun(Mop,Top)

X 7→|X|−−−−−→ Top.

And we compute:

Ψ(X) ∼= ∆• ⊗ (∆− ⊗X•−) ∼=
∫ c∈Mop

M(c, •)⊗

(∫ d∈Mop

M(d,−)⊗X(•,−)

)

∼=
∫ c∈Mop ∫ d∈Mop

M(c, •)⊗ M(d,−)⊗X(•,−)

∼=
∫ (c,d)∈Mop×Mop

M× M((c, d), (•,−))⊗X(•,−) ∼= |X|

using the (co)-continuity of Z ⊗− and the Fubini theorem to perform the required rearrangements, noting
that the tensor in Top is the cartesian product. �

Definition 5.1.3 ( [Rie14], 4.2.1). The two sided simplicial bar construction produces from

1. A tensored, cotensored, simplicially enriched categoryM,

2. a small category D,

3. functors G : Dop → sSet and F : D →M,

a simplicial object B•(G,D, F ). The n-simplices of B•(G,D, F ) are defined by the coproduct

Bn(G,D, F ) =
∐

~d : [n]→D

Gdn ⊗ Fd0,

where ~d is a shorthand for a sequence d0 → d1 → · · · → dn of n composable arrows in D. The face and
degeneracy maps reindex the coproducts by composing or adding identity arrows as appropriate.
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Definition 5.1.4 ( [Rie14], 4.2.1). The bar construction is the geometric realization of the simplicial bar
construction, i.e the functor tensor product of the simplicial bar construction with the Yoneda embedding.
Notation 5.1.5 ( [Rie14], 4.2.5). Riehl states that it is convention to write

B(D,D, F ) : D →M for the functor d 7→ B(D(−, d),D, F ).

We will use similar notation for the simplicial bar construction, as in the text.
Exercise 5.1.6 ( [Rie14], 4.2.6). TakingM = Set show that B•(D(−, d),D, ∗) ∼= N(D/d) so that B•(D,D, ∗)
is naturally isomorphic to the functor N(D/−) : D → sSet.

Proof. We want to give a natural bijection N(D/d)n ∼= Fun([n],D/d) → Bn(D(−, d),D, ∗). We have by
definition

Bn(D(−, d),D, ∗) =
∐

~d : [n]→D

D(dn, d).

We observe the data of a functor Ψ: [n]→ D/d is the following (all triangles commutative),

d0 d1 · · · dn

d

ψ

Defining Ψ� as the boxed subsection of the diagram, we have a map Fun([n],D/d) → Bn(D(−, d),D, ∗)
where Ψ 7→ ψ in the Ψ� component. This map is a bijection since the data of Ψ� together with ψ uniquely
determines Ψ, since all the triangles must commute. Naturality is due to the fact that the face and degneracy
maps act on Ψ and Ψ� in identical ways, namely by adding identities or composing arrows (one of which
might be ψ). �

Definition 5.1.7 ( [Rie14, 5.1.3]). The homotopy colimit (respectively limit), is the left (right) derived func-
tor of the colimit (limit):MD →M:

hocolimD := L colimD holimD := R lim
D

Example 5.1.8 ( [Rie14] 6.4.5). The double mapping cylinder as a homotopy colimit.
We would like to calculate the homotopy colimit of the following diagram F : D → Top:

X A Y
f g

This diagram is 1-skeletal since it has no non-trivial compositions, so the corresponding bar construction,
B•(∗,D, F ) is also 1-skeletal. So Lemma 4.4.3 of [Rie14] implies that

|B•(∗,D, F )| ∼= ∆•≤1 ⊗∆
op
≤1

(B•(∗,D, F ))≤1.

Evaluating the functor tensor product, we get by definition:

∆•≤1 ⊗∆
op
≤1

(B•(∗,D, F ))≤1 =

∫ ∆
op
≤1

∆•≤1 ⊗ (B•(∗,D, F ))≤1.

To evaluate this, we need to calculate the 0 and 1 terms of the simplicial bar construction:

B0(∗,D, F ) =
∐

~d:[0]→D

∗(d0)× F (d0) = X qAq Y

B1(∗,D, F ) =
∐

~d:[1]→D

∗(d1)× F (d0) = X1 qAf qA1 qAg q Y 1.
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Thus, we want:

∫ ∆
op
≤1

∆•≤1 ⊗ (B•(∗,D, F ))≤1 = coeq

 ∐
f :d→d′

∆•(d′)×B•(∗,D, F )(d)
f∗

⇒
f∗

∐
d

∆•(d)×B•(∗,D, F )(d)


There are three f ’s indexing the coproduct: two face maps, δ0, δ1 : [0] → [1], and one degeneracy map, σ0 :
[1]→ [0]. We can also write out entirely the object on the right, before we start reducing by the coequalizer:∐

d

∆•(d)×B•(∗,D, F )(d) = (X qAq Y )q
(
(X1 × I)q (Af × I)q (A1 × I)q (Ag × I)q (Y 1 × I)

)
,

where the superscripts on the spaces denote which 1-cells in F (D) the spaces arise from. The two maps
given by σ0, s

0, s0 are (with the maps given for each term in the coproduct):

s0 = (σ0)∗ :∆1 ×B0(∗,D, F )→ ∆1 ×B1(∗,D, F )

(X × I, A× I, Y × I) 7→ (X1 × I, A1 × I, Y 1 × I)

s0 = (σ0)∗ : ∆1 ×B0(∗,D, F )→ ∆1 ×B1(∗,D, F )

(X × I, A× I, Y × I) 7→ (X,A, Y )

This gives the reductions squishing the X1 × I , Y 1 × I , and A1 × I to just the X,Y,A of B0 ×∆0. Next, we
have the two maps given by δ0 : 0 7→ 0, d0, d

0 :

d0 = (δ0)∗ :∆0 ×B1(∗,D, F )→ ∆0 ×B0(∗,D, F )

(X1, Af , A1, Ag, Y 1) 7→ (X,A,A,A, Y )

d0 = (δ0)∗ : ∆0 ×B1(∗,D, F )→ ∆1 ×B1(∗,D, F )

(X1, Af , A1, Ag, Y 1) 7→ (X1 × {0}, Af × {0}, A1 × {0}, Ag × {0}, Y 1 × {0})

And finally, we have the maps given by δ1 : 0 7→ 1, d1, d
1:

d1 = (δ1)∗ :∆0 ×B1(∗,D, F )→ ∆0 ×B0(∗,D, F )

(X1, Af , A1, Ag, Y 1) 7→ (X,X,A, Y, Y )

d1 = (δ1)∗ : ∆0 ×B1(∗,D, F )→ ∆1 ×B1(∗,D, F )

(X1, Af , A1, Ag, Y 1) 7→ (X1 × {1}, Af × {1}, A1 × {1}, Ag × {1}, Y 1 × {1}).

On the X1 × I, Y 1 × I that we have already squished down with the σ0 identifications, the identifications
associated with δ1 attach them to the ends of the un-squished cylinders: Af × I and Ag × I . Then the
identifications associated with δ0 attach A1 × I , which is also squished down by σ0, to the bases of the two
cylinders. These identifications together give the mapping cylinder.
Remark. A remark or two on the consequences of the above calculation taken from commentary at the be-
ginning of [Dug08]. Firstly, this forms the homotopy pushout of the diagram D definitionally. It is worth
noting that collapsing the two additional cylinders, Af × I and Ag × I down onto A yields the traditional
pushout of the two spaces. Every such homotopy colimit will admit amap down to the normal colimit given
by collapsing all of the inserted homotopies.

What we have done practically is created a pushout, where the traditional identification, f(a) = g(a), is
replaced by a homotopy, H , given by moving across the double mapping cylinder.

27



Chapter 6

Weighted Limits and Colimits

6.1 The Grothendieck construction
Definition 6.1.1 ( [Rie14], nlab). Let B be a small category. A functor F : B → C is called a discrete right
fibration if for every object b ∈ B, for every morphism f : c→ c′ inB, and for every b′ ∈ F−1(c′) there exists
a unique f̃ : b→ b′ such that F (f̃) = f
Construction 6.1.2 ( [Rie14], 7.1.9, following paragraphs). Given a presheafW : Cop → Set the contravari-
ant Grothendieck construction produces a functor elW → C. By definition, objects in the category elW are
pairs (c ∈ C, x ∈ Wc), and morphisms (c, x) → (c, x′) are arrows f : c → c′ in C such thatWf : Wc′ → Wc
takes x′ to x. Note that the forgetful functor Σ: elW → C is a discrete right fibration.

Given a discrete right fibration F : B → C define a functor W : Cop → Set by taking Wc to be the
fiber F−1(c) on objects c ∈ C, and for morphisms f : c → c′, W (f) : F−1(c′) → F−1(c) is given by
(W(F )(f))(b′) = b such that f̃ : b→ b′ is the unique lift of f with co-domain b′.
Exercise 6.1.3 ( [Rie14], 7.1.9). Verify the above constructions define an equivalence between the category
SetC

op
and the full subcategory of Cat/C of discrete right fibrations over C.

Proof. The strategy is

1. Extend the definitions above to be functorial,

2. Define the requisite natural transformations for an equivalence,

3. Perform the requisite diagram chasing and verify some other properties as needed.

1) Let D be the full subcategory of Cat/C of discrete right fibrations over C. We define Q : SetC
op
→ D

on objects (functors) by the construction Σ above. That is, QF is the forgetful functor elF → C. From
a morphism (natural transformation) η : F ⇒ G we define a functor Qη : QF → QG by the following
formulas on objects c and morphisms f : (c, x)→ (c′, x′) in elF :

Qη(c, x) := (c, ηc(x)) and Qη(f : (c, x)→ (c′, x′)) := f : (c, ηc(x))→ (c′, ηc′(x
′)).

That f is actually amorphism (c, ηc(x))→ (c′, ηc′(x
′)) in elG requires thatGf(η′c(x

′)) = ηc(x). Naturality
of η gives Gf(η′c(x

′)) = ηc(Ff(x′)) and we have Ff(x′) = x since f was a morphism in elF . Functoriality
of Q is by definition of composition of natural transformations. It remains to check that QG ◦Qη = QF , so
that Qη is a morphism in D. This follows since the functor Qη is constant on the objects and morphisms as
elements of C, and the functors QG,QF are forgetful. For example QF (f) = f = (QG ◦ Qη)(f).

Next, we define a functor W: D → SetC
op
on objects (functors) by the construction W above. From

a morphism (functor) K : F → G in D (so F = GK) we define a morphism (natural transformation)
WK : WF ⇒ WG with legs (WK)c : F−1(c) → G−1(c) by (WK)c(e) := Ke. This definition is valid
since F = GK impliesKe ∈ G−1(c) and is functorial inK.
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2, 3) We first define the natural isomorphism Φ: QW⇒ 1D, which consists of a functor ΦF : elWF → E
for each F : E → C ∈ D, so that the following diagrams commute for allK : F → F ′ ∈ D:

C

elWF E

QWF

ΦF

F and
QWF QWF ′

F F ′

QWK

ΦF ΦF ′

K

(in Cat and D respectively) along with the further requirement that ΦF is an isomorphism for each F .
We first unpack the definition of the category elWF . The objects are pairs (c, e) where c ∈ C and

e ∈ WF (c) = F−1(c). Thus e is an object of E . And morphisms are g : (c, e) → (c′, e′) where g : c → c′

is a morphism in C such that WF (g) : WF (c′) → WF (c) which takes e′ to e. For (c, e) ∈ elWF and
g : (c, e)→ (c′, e′) ∈ elWF we define ΦF (c, x) := x. The morphism ΦF (g) : e→ e′ is defined to be g̃ where
g̃ is the unique lift of g along F with co-domain e′, g̃ is indeed a morphism from e to e′ is guaranteed by
the Grothendieck construction. Functoriality of this definition follows from the uniqueness of g̃, specifically
ΦF (gf) = g̃f , but F (g̃f̃) = F (g̃)F (f̃) = gf and from the uniqueness g̃f = g̃f̃ . Now commutativity of the
left-hand diagram above is tautological (analogous to that of Qη in part 1).
Now we check the commutivity of the right hand diagram. Since we checked the commutativity of the left
hand diagram, it is enough to check the commutativity of following diagram,

elWF elWF ′

E E ′.

Q(WK)

ΦF ΦF ′

K

Let (c, e) ∈ elWF , then Q(WK)(c, e) = (c, (WK)c(e)). Recall that (WK) is a natural transformation
whose legs are given by (WK)c(e) = K(e). Thus the top-right maps (c, e) to ΦF ′(c,K(e)) = K(e). Now
left-bottommaps (c, e) toK(e). Thus the functors agree on objects. Now let g : (c, e)→ (c′, e′) be amorphism
in elWF , then

Q(WK)(g : (c, e)→ (c′, e′)) = g : (c, (WK)c(e))→ (c′, (WK)′c(e
′))

But since (WK)c(e) = K(e) we get g : (c,Ke) → (c′,Ke′) Now taking ΦF ′ we get g maps to g̃Ke′ ,
the unique lift of g along F ′ with co-domain Ke′. Whereas left-bottom maps to K(g̃e). Observe that
F ′(K(g̃e)) = F (g̃e) = g. ThusK(g̃e) is a lift of g along F ′ with co-domainK(e′). Thus from uniqueness we
getK(g̃e) = g̃Ke′ . Thus the functors agree on morphisms hence the diagram commutes.

Now we will show that ΦF is an isomorphism by constructing its inverse, Φ−1
F : E → elWF , by defin-

ing Φ−1
F (e) := (Fe, e). The morphism Φ−1

F (g) : (Fe, e) → (Fe′, e′) is defined to be Fg, valid as a morphism
in elWF since Fg is the unique arrow lifting Fg : Fe → Fe′ with codomain e′ (by the discrete fibration
property) and therefore WFg(e) = e′ by definition of W. With these definitions, functoriality of Φ−1

F is
inherited from that of F .
Now Φ−1

F ΦF (c, e) = Φ−1
F (e) = (Fe, e) = (c, e), and Φ−1

F ΦF (g) = Φ−1
F (g̃) = F (g̃) = g. One checks the other

direction in similar fashion. Thus Φ : QW⇒ 1D is a natural isomorphism.

The natural isomorphism Ψ: 1SetC
op ⇒ WQ consists of a natural isomorphism ΨF : F ⇒ WQF for each

F ∈ SetC
op
. In turn, (ΨF )c := ΨFc consists of a bijection Fc → WQFc. Finally, the following diagrams

must commute for any natural transformation η : F ⇒ G and any morphism f : c→ c′ in C:

F G

WQF WQG

η

ΨF ΨG

WQη

Fc′ Fc

WQFc′ WQFc

Ff

ΨFc′ ΨFc

WQFf

Unpacking the object WQFc = (QF )−1(c) = {(c, x)|x ∈ Fc} ⊂ elF we define ΨFc(x) = (c, x), which is
immediately a bijection. We check the commutativity of the right hand diagram first. The top compositite
maps x′ ∈ Fc′ to (c, Ff(x′)) and the bottom composite is WQFf(c′, x′)
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Worth noting is that the order of composition matters a lot here. Specifically, the bottom composite is
((W(Q(F )))(f))(c′, x′). Evaluating this, we get W(QF )(f)(c′, x′) is the domain of unique lift of f along
QF with co-domain (c′, x′). Nowobserve that f : (c, x)→ (c′, x′) is amorphism in elF such thatFf(x′) = x.
Thus f is the required unique lift and hence W(QF )(f)(c′, x′) = (c, x) = (c, Ff(x′)). Thus the right dia-
gram commutes.

Now since we checked the right hand diagram, it is enough to check following diagram,

Fc Gc

W(QF )(c) W(QG)(c)

ηc

ΨFc ΨGc

(WQη)c

.

On elements, we claim the above diagram expands to:

x ηc(x)

(c, x) (c, ηc(x))

ηc

ΨFc ΨGc

(WQη)c

.

The composite of the top left and right arrows is from their respective definitions, whereas the bottom com-
posite follows has the correct action from the equation (c, x) 7→ (Qη)(c, x) = (c, ηc(x)). Thus Ψ : 1D ⇒ WQ
is a natural isomorphism. �

6.2 Weighted Limits and Colimits
Exercise 6.2.1 ( [Rie14], 7.2.2). Express a cokernel pair, i.e. a pushout of f : a→ b along itself as a weighted
colimit.

Proof. Let f : 2 → M1 be the functor with image f : a → b and letW : 2op → Set have image ∗ q ∗ → ∗.
Then colimW f satisfies,

M(colimW f,m) ∼= Set2
op

(W,M(f,m)).

A natural transformation,W ⇒M(f,m) has two legs. The leg of the natural transformation corresponding
to 1 is the set map, ∗ →M(a,m) (i.e. isomorphic to a morphism, a → m) and the leg corresponding to 2
is the set map ∗ q ∗ →M(b,m) (i.e. isomorphic to two morphisms, b → m). Furthermore, the naturality
statement insists that precomposing either of thesemaps by f yields the givenmap a→ m. Thus,morphisms
colimW f → m are in bijection with pairs of morphisms that have common precomposite with f . This is
precisely the definition of the pushout:

a b

b colimW (f)

m

f

f

y
p

q

∃!

Then the morphisms p and q satisfying this pushout are the definition of a cokernel pair. �

Exercise 6.2.2 ( [Rie14], 7.6.5). Prove, using the defining universal property, that in a co-tensoredV-category,
colimits with arbitrary weights preserve (pointwise) tensors. Note this implies a complementary result to
lemma [Rie14, 3.8.3]: in a tensored and cotensored simplicial categoryM, geometric realization preserve
both pointwise tensors and the tensors defined in [Rie14, 3.8.2].

1For convenience, we will let 1 denote the initial object and 2 denote the terminal object in this category.
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Proof. Let F : D →M andW : Dop →M be V−functors. For v ∈ V , we want to show that v ⊗ colimW F ∼=
colimW (v ⊗ F−). Consider the following chain of natural isomorphisms:

M(v ⊗ colimW F,m) ∼=M(colimW F,mv)

∼= VD
op

(W,M(F−,mv))

∼= VD
op

(W,M(v ⊗ F−,m))

∼=M(colimW (v ⊗ F−),m).

Here the first and third isomorphisms are tensor-cotensor adjunction and the second and fourth isomor-
phisms are from the universal property of colimits. Thus we conclude v ⊗ colimW F ∼= colimW (v ⊗ F−) as
required. �

Exercise 6.2.3 ( [Rie14] 7.6.8). Suppose M is V-bicomplete. Describe the universal property of left and
right Kan extensions. Show conversely that a V-functor satisfying the appropriate universal property is a
pointwise Kan extension in the sense previously defined.

Proof. All categories, functors, and natural transformations in this problem are appropriately enriched over
V , and C is assumed to be small. For reference, the diagram of categories and functors is

C M

D

F

K LanKF
.

We claim that a Kan extension of F alongK, defined in Riehl as

LanKF (d) := colimD(K−,d) F ∼= D(K, d)⊗C F

is equivalently a representing object for the functor

MC(F,− ◦K) : MD → V.

Existence is due to V-bicompleteness ofM, so it remains to verify the definition of LanKF (d) satisfies the
purported universal property. We do so by explaining the following sequence of isomorphisms natural in
G ∈MD.

MD(LanKF,G) :=

∫
d∈D
M(LanKF (d), Gd) ∼=

∫
d∈D
M

(∫ c∈C
D(Kc, d)⊗ Fc,Gd

)
∼=
∫
d∈D

∫
c∈C
M(D(Kc, d)⊗ Fc,Gd) ∼=

∫
d∈D

∫
c∈C
M
(
Fc,GdD(Kc,d)

)
∼=
∫
c∈C
M
(
Fc,

∫
d∈D

GdD(Kc,d)

)
∼=
∫
c∈C
M(Fc,GKc) =:MC(F,GK).

The isomorphisms on the first line are definitional. The second line uses the cocontinuity of enriched hom
in the first variable and then the enriched hom-tensor-cotensor adjunction along with the Fubini theorem.
We finish by using the continuity of hom in the second variable and the Yoneda Lemma. The converse is
the Yoneda Lemma. For completeness: Suppose L is a functor which also satisfies the universal property of
the Kan extensions given above. The Enriched Yoneda Lemma (technically the pre-requisite lemma 3.5.12)
in Riehl applied toMD along with the natural isomorphisms

MD(LanKF,−) ∼=MC(F,− ◦K) ∼=MD(L,−)

imply LanKF ∼= L. Dually, we assert a right Kan extension of F along K is a representation for the functor
MC(− ◦K,F ) : MC → V , and omit the proof which is similar to the above. We observe that it is possible to
have a Kan extension (representing object) which is not defined in the “pointwise sense" only if the target
M is not V-bicomplete. �
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Exercise 6.2.4 ( [Rie14], 8.1.5). IfM is a tensored and cotensored V-category and K : C → D, F : D →M,
andW : Dop → V are V-functors, then:

colimLanKW (F ) ∼= colimW (FK)

Proof. We directly calculate, using co-continuity,the coYoneda lemma, and Fubini as appropriate:

colimLanKW (F ) ∼= LanKW ⊗D F

∼=
∫ d∈D

LanKW (d)⊗ F (d)

∼=
∫ d∈D

(D(K−, d)⊗D W )⊗ F (d)

∼=
∫ d∈D ∫ c∈C

D(Kc, d)⊗Wc⊗ Fd

∼=
∫ c∈C

Wc⊗
∫ d∈D

D(Kc, d)⊗ Fd

∼=
∫ c∈C

Wc⊗ FKc

∼= W ⊗C FK
∼= colimW FK.

This proof is very similar to 5.1.2 part II (the part which does not use this result). �

Corollary 6.2.5 (8.1.6 [Rie14]). LetM be a tensored and cotensored simplicial category. Then the geometric realiza-
tion, | − | :M∆op →M preserves the simplicial tensor defined pointwise by (K ⊗X)n := Kn ·Xn.

Proof. Riehl gives the string of isomorphisms without explanation:

K ⊗ |X| ∼= (K• ⊗M ∆•)⊗ (∆• ⊗Mop X•) ∼= (∆• ×∆•)⊗Mop×Mop (tK•X•) ∼= ∆• ⊗Mop (tK•X•) ∼= |K ⊗X|

We observe the first is definitional, the second is an application of Fubini, the third is an application of 5.1.2
(using the above result) and the definition of the cotensor, and the last is again definitional (4.3.2). �

Exercise 6.2.6 ( [Rie14] 8.5.11). Write 22 for the category • ⇒ •. Show the functor F : 22 → M with image
[1]⇒ [0] is not homotopy final.

Proof. The strategy is to compute |N([2]/F )| ' S1, so that F is not homotopy final. The first step is to
analyze the structure of the category [2]/F . Objects of [2]/F are morphisms [2] → [0] and [2] → [1] in Mop.
These are the opposites of morphisms [0], [1] → [2] ∈ M, i.e order preserving maps from [0], [1] → [2]. We
will represent both kinds of objects as 2 dots, implicitly ordered by their position on the page. These dots
are the elements 1, 2 ∈ [2] (so we don’t write the element 0). If f : [0] → [2] is a map we write a bar after
the image of 0. Likewise, for f : [1] → [2] we write bars after the images of 0 and 1. For instance the map
{0, 1} = [1]→ [2] = {0, 1, 2} sending 0 to 0 and 1→ 2 has notation | • • |.

Since the only endomorphisms of [0], [1] in the image of F are identity, any object in [2]/F also has only
identity endomorphisms. For morphisms, a morphism a→ b is a map f : [2]→ [2] such that either

[2] [2]

[0] [1]

f

a b

07→0

or
[2] [2]

[0] [1]

f

a b

0 7→1

commutes.

Since the only choice is f = Id[2], these choices correspond exactly to erasing one of the bars in the graph-
ical representation. Since you can only erase one bar, [2]/F has no nontrivial compositions (any compos-
able tuple of n morphisms has at least n − 1 identity morphisms) and therefore has 1-skeletal nerve and
|N [2]/F | ' |N [2]/F |≤1. We have the following diagram of |N [2]/F |≤1:
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|| • • | • | • | • • | • || • • | • | • • ||

| • • • | • • • |

which, after contracting the objects || • •, •||• and • • || along their attaching 1-cells, rearranges to

| • | •

| • • |

• | • || • •

• | •

• • |

as desired. �

The authors pushed an identical argument through with significantly increased computational effort
(The resulting cell structure has 50 0-cells, 108 1-cells, and 60 2-cells) to show the n = 2 case of the following
conjecture:

Conjecture 6.2.7. Let Gn, n ≥ 1 be the inclusion of the full subcategory with objects [0], [1], · · · , [n] into Mop. Then
|N([n+ 1]/Gn)| ' Sn and so none of these functors are homotopy final.

Idea of proof. As before, we get a "graphical" language for the category |N([d]/Gn)| as pictures of d dots with
1 ≤ k < n + 1 separating bars. Morphisms will be erasing some number of bars, leaving at least one. This
category is n-skeletal since any n + 1 tuple of composable morphisms will contain an identity (can’t erase
more than n bars). At this point we choose d = [n+ 1], and the difficulty enters because there will be lots of
degenerate simplices which add contractible “junk" onto the (complicated) cell structure on the n-sphere.
We now show the resolution in n = 2 case. With the direction of arrows omitted, part of the 1-skeleton of
the 2-sphere we arrive at is:

| • • •

| • | • •
| • • | •

| • • • |

• | • •
• | • • |

| • •

• | •

• • |

• • |

We would want that the cells in the complete 2-skeleton that attach onto the highlighted hexagon just fill it,
but the actual strucure that attaches here is:
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| • | • | •

• | • | •

| • | • •

| • • | •

• | • •

• • | •

| • • •

• • || •

• | • || •

• • ||| •

|| • • •|| • • •

||| • • •

| • || • •

• || • • • ||| • •

(with 2-cells in gray). We see that extra cells appear, but there’s still a deformation retraction onto the
sphere.

�
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Chapter 7

Model Categories

7.1 Weak factorization systems in model categories

Exercise 7.1.1 ( [Rie14], 11.1.9). Prove that ⊗̂, {̂}, and ˆhom define a two-variable adjunction between the
arrow categories by writing down the explicit hom-set bijections

P2(i⊗̂j, f) ∼= N 2(j, ˆ{i, f}) ∼=M2(i, ˆhom(j, f)).

A warm up exercise might be in order: Consider m ⊗ n′ h→ p and let n j→ n′. Show that the transpose of

m⊗ n m⊗j→ m⊗ n′ h→ p is the compositem h→ ˆhom(n′, p)
j∗→ ˆhom(n, p), where h is the transpose of h.

Proof. We first verify the smaller claim. The basic tensor-hom adjunction we are given is that:

P(m⊗ n, p) ∼=M(m,hom(j, f)).

By the naturality of the adjunction we have that the commutation of the triangle

m⊗ n p

m⊗ n′
m⊗j

h

is equivalent to that of the triangle
m hom(n, p)

hom(n′, p)

h
j∗ .

This gives the conclusion desired by the “warm-up” exercise. Wewill describe the hom-set bijection between
⊗̂ and {̂}, since the other bijection is similar. Amorphism i⊗̂j → f is given by a pair of arrows (labeled with
♣) so that the following commutes:

m⊗ n m′ ⊗ n ·

m⊗ n′ · ·

m′ ⊗ n′

i

j

p

f
♣

i⊗̂j ♣

,
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while a morphism j → ˆ{i, f} is is given by the pair of arrows labeled with ♠ in the commutative diagram:

{m′, p}

· · {m, p}

· {m′, p′} {m, p′}

ˆ{i,f}♠

j
y♠

.

These diagrams are adjoints of each other, so each commutes if and only if the other does. We conclude
morphisms j → ˆ{i, f} and morphisms i⊗̂j → f are in bijection. �

7.2 Small Object Argument
Definition 7.2.1 ( [DS95], 3.1). Given a commutative diagram

A X

B Y

i

f

p

g

(7.2.1)

a lift or lifting in the diagram is amap h : B → X such that the resulting diagramwith five arrows commute,
i.e g = ph and f = hi.
Definition 7.2.2 ( [DS95], 3.12). A map i : A → B is said to have the left lifting property (LLP) with
respect to another map p : X → Y and p is said to have right lifting property (RLP) with respect to i if a
lift exists in any diagram of the form 7.2.1.

Given a map p : X → Y and a set of maps F = {fi : Ai → Bi}i∈I , we desire to factor p as a composite
X → X ′ → Y such that the mapX ′ → Y has the RLP with respect to all of the maps in F . We can however
take X ′ = Y but we want to find X ′ as “close” to X as possible. The construction depends on an argument
called the “small object argument” that is due to Quillen.

Let Z+ = {0 → 1 → 2 → · · · } be the category with objects non-negative integers and a single morphism
i → j for i ≤ j. Let C be a category with all small colimits. Given a functor F : Z+ → C and an object A of
C, the natural maps F (n)→ colimF induce maps C(A,F (n))→ C(A, colimF ). Thus we get a map

colimn C(A,F (n))→ C(A, colimn F (n)). (7.2.2)

Definition 7.2.3 ( [DS95], 7.14). An object A of C is said to be sequentially small if for every functor
F : Z+ → C the canonical map 7.2.2 is a bijection.
Remark 7.2.4 ( [DS95], 7.15). A set is sequentially small if and only if it is finite. An R-module is sequen-
tially small if it has a finite presentation. I.e., it is isomorphic to the cokernel of a map between two finitely
generated free R-module. A chain complexM• is sequentially small if only a finite number of the modules
Mk are non-zero, and eachMk has finite presentation.

Proposition 7.2.5. Suppose an object A of C is sequentially small. Let F : Z+ → C be a functor, and let g : A →
colimn F (n) a morphism in C. Then there is k ≥ 0 and g′ : A → F (k) such that g = ikg

′ where ik : F (k) →
colimn F (n) is a natural map.

Proof. Since A is sequentially small there is g1 ∈ colimn C(A,F (n)) such that g1 7→ g. Since this col-
imit is in Set, there exists g′ ∈ C(A,F (k)) for some k ≥ 0 such that g′ 7→ g1 under the canonical map
C(A,F (k))→ colimn(A,F (n)). By definition, the composition

C(A,F (k))→ colimn C(A,F (n))→ C(A, colimn F (n))

is given by composing with the natural map ik : F (k)→ colimn F (n). Thus g = ikg. �
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Construction 7.2.6 ( [DS95], discussion following 7.15). Let F = {fi : Ai → Bi}i∈I be a set of maps and
p : X → Y be a map in a cocomplete category C. For each i ∈ I consider the set S(i) which contains all pairs
of maps (g, h) such that the following square commutes,

Ai X

Bi Y

g

fi p

h

(7.2.3)

We define the Gluing construction G1(F , p) to be the object of C given by the pushout diagram

∐
i∈I
∐

(g,h)∈S(i)Ai X

∐
i∈I
∐

(g,h)∈S(i)Bi G1(F , p)

+i+(g,h)g

∐
i

∐
(g,h) fi

i1

j1

where +i +(g,h) g is the canonical map induced from all such g. One can think of this construction as gluing
a copy of Bi to X along Ai for every commutative diagram of the form 7.2.3. From the universal property
of pushout we get a map p1 : G1(F , p) → Y such that p1i1 = p. Now define Gk(F , p) and pk for k > 1
iteratively by setting Gk(F , p) = G1(F , pk−1) and pk = (pk−1)1. We get the commutative diagram,

X G1(F , p) G2(F , p) · · · Gk(F , p) · · ·

Y Y Y · · · Y · · ·

i1

p

i2

p1

i3

p2

ik ik+1

pk

= = = = =

Let G∞(F , p), the Infinite Gluing Construction, be the colimit of the upper row in the diagram. Then there
are natural maps i∞ : X → G∞(F , p) and p∞ : G∞(F , p)→ Y such that p = p∞i∞.

Proposition 7.2.7 ( [DS95], 7.17). In above construction, suppose that for each i ∈ I the objectAi of C is sequentially
small. Then the map p∞ : G∞(F , p)→ Y has RLP with respect to each of the maps in the family F .

Proof. Please consider the commutative diagram,

Ai G∞(F , p)

Bi Y

g

fi p∞

h

.

Since Ai is sequentially small, from 7.2.5, g : Ai → G∞(F , p) factors as g = ik,∞g
′ where g′ : Ai → Gk(F , p)

and ik,∞ : Gk(F , p)→ G∞(F , p) is a natural map. Thus we get following commutative diagram,

Ai Gk(F , p) Gk+1(F , p) G∞(F , p)

Bi Y Y Y

g′

fi

ik+1

pk

ik+1,∞

pk+1 p∞

h = =

.

Here the top composite is g. However, since (g′, h) is an index in the construction ofGk+1(F , p), we get amap
Bi → Gk+1(F , p). Composing this map with the map Gk+1 → G∞(F , p), we get the required lifting. �
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7.3 Ken Brown’s Lemma
Lemma 7.3.1 ( [Rie14], 11.3.14). LetM,N be model categories and suppose F :M→N sends trivial cofibrations
between cofibrant objects to week equivalences. Then F is homotopical on the subcategory of cofibrant objects.

Proof. Suppose w : A→ B is a weak equivalence between co-fibrant objects inM. Consider the morphism,
w + 1 : A

∐
B → B, factorised as a cofibration followed by a weak fibration, q:

w + 1 : A C Bq
∼ .

SinceA,B are cofibrant, natural mapsA→ A
∐
B,B → A

∐
B are co-fibrations ( [Rie14], 11.1.4). Let i and

j be the compositions, i : A→ A
∐
B → C, j : B → A

∐
B → C, then i, j are co-fibrations. Also from 2 out

of 3, i and j are weak equivalences. Now consider following diagram,

∅ B

A
∐
B

A C

B

j∼
1

∼
i

w

q

∼

.

Since cofibrations are closed under taking pushouts and composition ( [Rie14, 11.1.4]), i, j are cofibrations
and hence trivial cofibrations. Now we get following diagram,

A B

C

w

∼
i j

∼

q

.

Here q is retraction of j. Now from the hypothesis, Fi, Fj are weak equivalences. By 2 out of 3 property Fq
is also a weak equivalence (observe that Fq ◦ Fj = 1). Finally Fw = Fq ◦ Fi is a weak equivalence again
from the 2 out of 3 property. �

Corollary 7.3.2 ( [Rie14], 12.2.4). IfK permits the small object argument, then �(J�) is the smallest class of maps
containing J and closed under the colimits listed in the lemma [Rie14, 11.1.4]. More specifically, any map in �(J�)
is a retract of a transfinite composite of pushouts of coproducts of maps in J . This shows that �(J�) is the weak
saturation of J , the smallest weakly saturated class containing J .

Proof. From the definition of �(J�), J ⊂ �(J�) is immediate. Also from lemma [Rie14, 11.1.4], �(J�)
is closed under the colimits listed in that lemma. To show that �(J�) is smallest such class we will show
that any map in �(J�) is a retract of a transfinite composite of pushouts of coproducts of maps in J . Let
f ∈ �(J�), let Rωf and LRnf be as in the proof of theorem [Rie14, 12.2.2]. Let LRωf be the canonical
map x0 → colimn xn. That is LRω is the transfinite composite of coproducts of maps in J . From the proof
of the theorem [Rie14, 12.2.2] we get that f = Rωf ◦ LRωf where LRωf ∈ �(J�) and Rωf ∈ J�. Since
f ∈ �(J�), we get following lifting diagram,

• •

• •.

LRωf

f Rωf

1

h so that f is a retract of LRωf,
• • •

• • •

1

f

1

LRωf f

h Rωf

.

�
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Appendix A

Monads

In a very abstract sense, a Monad is a way of encoding structure over an object in a category, such as Set.

A.1 Definition
Definition A.1.1 ( [Rie17], 5.1.1). A monad on a category C consists of

• An endofunctor, T : C → C,

• A unit natural transformation, η : IdC ⇒ T ,

• A multiplication natural transformation, µ : T 2 ⇒ T ,

such that the following diagrams commute in the functor category, CC :

T 3 T 2

T 2 T

µT

Tµ

µ

µ

T T 2 T

T

ηT

IdT

Tη

µ
IdT

. (A.1.1)

A variety of intuitions are available:

• “A monad is just a monoid in the category of endofunctors, what’s the problem?” – Philip Wadler
(apocryphal)

• “A monad is the ‘shadow’ cast by an adjunction on the category on the appearing on the as the
codomain of the right adjoint.” [Rie17]

The most intuitive example that I found online was the monoid example from the Catsters video series
on monads [Che14]:
Example A.1.2 (The Monad for Monoids). We set C = Set, and we need to describe three pieces of data
(that satisfy the commutativity laws).

• T takes a set A to the set of finite lists of elements in A (we will denote a list with brackets instead of
braces).

• To define η : IdSet ⇒ T , we need to create a set of lists out of a simple set. An “obvious” way to do
this that preserves all of the data is to directly convert elements into lists, and indeed, this is what we
do:

ηA(a) = [a].
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• To define µ : T 2 ⇒ T , we note that the set T 2A is the set of lists of lists of elements of A, which is a bit
of a mouthful. We are hoping to land in TA, which is simply the set of (finite) lists of elements of A.
A natural guess of how to do this is concatenation: a list of lists goes to the list made by concatenating
all of its lists. For example,

µ([[a, b], [c], [d, e]]) = [a, b, c, d, e].

Now we need to check that we actually have defined a Monad (since all we have done so far is make
Category-theoretical guesses on what everything has to be for the math to work out).

First we check the square: An element in T 3(A) is, in words, a list of lists of lists. That is, three levels of
stacked brackets, such as:

x = [ [ [a, b], [c] ], [ [d], [e, f ] ] ] .

Taking the upper right path along the square (A.1.1) concatenates the the interior brackets together, while
taking the lower left path concatenates the out brackets first. The last path for each direction does the same
thing, since there is no whiskering.

In terms of this example, we have the square:

[ [ [a, b], [c] ], [ [d], [e, f ] ] ] [ [a, b, c], [d, e, f ] ]

[ [a, b], [c], [d], [e, f ] ] [a, b, c, d, e, f ]

Tµx

µTx µ

µ

In this example, the square certainly commutes, but it also does generally, since what we are ascertaining is
that it doesn’t matter which order we get rid of the (interior) brackets in, which is generally true.

For the other triangle(s), we need to check that the composition µ ◦ ηT is the identity on T . Recall that
η simply adds brackets (i.e. makes a list of) every element in the set being considered. However, there are
multiple ways to do this. We can either place an extra layer of brackets around each of the interior lists (Tη)
or place a layer of brackets around the big list (ηT ). Either way, under concatenation, these extra brackets
will vanish, leaving us with the same list that we started with. To make this more explicit, we consider
another example,

y = [a, b, c].

[a, b, c] [[a, b, c]]

[a, b, c]

ηTy

IdT y

µ

[[a], [b], [c]] [a, b, c]

[a, b, c]

µ

Tηy

IdT y

Important Point: None of these natural transformations can reduce down to the level of the original category.
Wewill always be living in the image ofT . So, althoughwehave constructed amonad formonoids (or rather,
we claim to have), we don’t actually have a single monoid yet. The only reason that we might consider this
monad to be reminiscent of a monoid is that words are sort of like products of elements of the monoid. But
to actually find a value for the word within a monoid, we need a map to the underlying set of the monoid.

That is, if A is the underlying set of a monoid, then for a, b, c ∈ A, we can form the word, [a, b, c] ∈ TA.
And further, we know that the way we stack lists doesn’t matter, so [[a, b], c] and [a, [b, c]] ∈ T 2A both map
to [a, b, c] ∈ TA, which is reminiscent of associativity (and will be associativity in the monoid we are going
to construct). However, we don’t know what element of A [a, b, c] corresponds to. Thus, to encode any
structure more specific than that of a general monoid, we need to provide a morphism, TA → A, that tells
us what the value of [a, b, c] actually is in the monoid.

The underlying set A (i.e. an object of the category we are considering) and the morphism TA → A
together form an algebra over the monad (which in this case is a monoid). In a sense, the monad provides
as much information about the monoid as it can generally, and the algebra fills in the gaps of information
that can’t be presented generally. We will now be more precise:
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Definition A.1.3. An algebra over a monad, T : C → C is an object A ∈ C and morphism ev : TA → A
satisfying the following commutativity conditions:

T 2A TA

TA A.

µA

T (ev) ev

ev

A TA

A

ηA

IdA

ev

In the case of themonad formonoids, anA ∈ C is a set, and themap ev : TA→ A gives the evaluation of a
list/word in TA. This also makes clear what the identity element of themonoid is: the empty string, [ ] ∈ TA
must have an image ev([ ]) ∈ A. The commutativity conditions ascertain that ev([ ]) is the identity element of
themonoid. It’s worth noting that while the identity element is a specific element of the algebra’s underlying
set, it’s existence is enforced entirely by the monad, and it’s in this way that the monad for monoids encodes
the existence of an identity element.
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