P. CHRIS HAMMEL

DEPARTMENT OF PHYSICS THE OHIO STATE UNIVERSITY

191 West Woodruff Avenue	Phone: 614 247-6928		e-mail: hammel@mps.ohio-state.edu
Columbus, Ohio 43210-1117	Fax:	292 - 7557	e-man. nammer@mps.omo-state.edu

Education

- B.A. in Physics, University of California, San Diego, Magna Cum Laude 1977.
- Ph.D. in Physics, Cornell University 1984, Thesis topic: "Magnetic Coupling Across the Liquid ³He-Substrate Interface" Advisor: Prof. R.C. Richardson.

Employment and Appointments

- Professor and Ohio Eminent Scholar, The Ohio State University, June 2002 to present
- Fellow, Los Alamos National Laboratory, July 2000 to August 2004
- **Staff member**, Condensed Matter and Thermal Physics Group, Los Alamos National Laboratory, October 1989 to June 2002
- Visiting Associate in Physics, California Institute of Technology, Pasadena, CA, 1996–2000
- J. Robert Oppenheimer Fellow, Los Alamos National Laboratory, October 1986 to October 1989
- Postdoctoral Fellow, MIT with Prof. John S. Waugh, January 1984 to October 1986
- Research Assistant, Laboratory of Atomic and Solid State Physics, Cornell University, Ithaca, NY, June 1979–January 1984

Research Interests

- Magnetic resonance force microscopy
- Spin electronics and microwave properties of magnetic materials
- Biomagnetism
- Novel approaches to magnetic resonance
- Optically detected magnetic resonance

Awards and Honors

- Oppenheimer Fellow, Los Alamos National Laboratory, October 1986
- Fellow, Los Alamos National Laboratory, July 2000
- Los Alamos National Laboratory Fellows Prize, February 1995
- Fellow, The American Physical Society, 1998
- Fellow, The American Association for the Advancement of Science, 2006

Professional Activities

- Director, Center for Emergent Materials (CEM), a National Science Foundation funded Materials Research Science and Engineering Center (MRSEC)
- Founding Director, Center for Electronic and Magnetic Nanoscale Complex Multifunctional Materials (ENCOMM) 2005–2011
- Member-At-Large, Executive Committee of The American Physical Society Topical Group on Magnetism and its Applications
- Member, External Review Committee for US DOE, Office of Basic Energy Sciences (BES) Materials Chemistry Research Program at the Lawrence Berkeley National Laboratory (LBNL) 13–16 January 2014 and 15–18 January 2008, Berkeley, CA
- Member Visiting Committee, Cornell Center for Materials Research, an NSF MRSEC, 1–2 May 2013, Ithaca, NY
- Member, DOE Committee of Visitors Review of the Materials Sciences and Engineering Division May 22–24, 2012, DOE Germantown Complex
- External reviewer for the Department of Physics at Kent State University
- Member, Program Committee, 2011 Magnetism and Magnetic Materials International Conference
- Member, American Physical Society (1979-present)
- Member, Penn State University MRSEC Visiting Committee
- Member, Executive Committee of the Instrumentation and Measurement Sciences Topical Group of the American Physical Society (2001-2005)
- Co-chair, *International Workshop on Novel Magnetic Materials*, Leibniz Institute for Solid State and Materials Research, 23–25 August 2010, Dresden, Germany
- Member, American Association for the Advancement of Science (2002-present)
- Proposal referee and panelist, National Science Foundation,
- Proposal referee, Department of Energy, The Research Foundation and the Petroleum Research Foundation
- Manuscript referee, Physical Review Letters, Science, Nature, Physical Review B, Applied Physics Letters, Journal of Applied Physics and Physica C
- Chairman, DOE BES Electron and Scanning Probe Microscopies Contractors Meeting, October 26–29, 2008
- Member, External Review Committee, Materials Chemistry Division, Lawrence Berkeley National Laboratory, Berkeley CA, 15–18 January 2008
- Member, External Review Committee, Materials Division, Argonne National Laboratory, Argonne, IL, 14–16 May 2008
- Invited panelist, Scientific Review of Stanford's *Center for Probing the Nanoscale*, 16–19 September, 2009
- Co-organizer, International Conference on Experimental Implementation of Quantum Computation, January 16–19, 2001, Sydney, Australia

- Co-organizer of workshop on Scanned Probe Microscopy in Biology, Chemistry and Physics, December 9–12, 2001 Santa Fe, NM.
- Member, Quantum Information Science and Technology Expert Panel, tasked with developing a national quantum information roadmap (2000-2002)
- Member, International Advisory Committee, Australian Research Council Special Research Centre for Quantum Computer Technology (2000-2002)
- Member, Los Alamos National Laboratory Postdoctoral Committee (2000-2002)
- Leader, Complex Functional Nanomaterials Thrust of the LANL/Sandia Center for Integrated Nanomaterials (2001-2002)

Invited Talks

American Physical Society

- 1. "¹⁷O NMR in YBa₂Cu₃O_{7- δ}," presented at the March Meeting of the American Physical Society, Anaheim, California, March 16–20, 1990.
- 2. "NMR Studies of $La_2CuO_{4+\delta}$," presented at the March meeting of the American Physical Society, Seattle, Washington, March 22–26, 1993.
- "NMR/NQR Studies of Oxygen Doped La₂CuO₄: Inhomogeneous Structure and Hole Localization," presented at the March meeting of the American Physical Society, St. Louis, Missouri, March 18–22, 1996.
- "Ferromagnetic Resonance in Microscopic Magnets Using Magnetic Resonance Force Microscopy," presented by Z. Zhang at the March meeting of the American Physical Society, Kansas City, Missouri, March 17–21, 1997.
- "Magnetism of Charge-Stripe Ordered 2D Transition Metal Oxides," presented at the March meeting of the American Physical Society, Atlanta, GA, March 21–26, 1999.
- "Magnetic Resonance Readout in the Silicon-Based Nuclear Spin Quantum Computer," presented at the March meeting of the American Physical Society, Minneapolis, MN, March 20–24, 2000.
- "Scanning MRFM of Microscopic Ferromagnets" presented at the March meeting of the American Physical Society, Indianapolis, IN, March 18–22, 2002.
- 8. "Force-Detected Scanned Probe Magnetic Resonance Microscopy," presented at the March meeting of the American Physical Society, Montreal, Canada, March 26, 2004
- 9. "Ferromagnetic Resonance Imaging with Magnetic Resonance Force Microscopy," presented by Denis Pelekhov at the March Meeting of the American Physical Society, March 2009
- 10. "Nanoscale scanning probe ferromagnetic resonance imaging using localized modes," presented at the March Meeting of the American Physical Society, Dallas TX, March 2011

Gordon Research Conferences

- "Anisotropic Knight Shifts and Relaxation Rates in YBa₂Cu₃O₇," presented at the Gordon Research Conference on Magnetic Resonance, Plymouth NH, June 19–23, 1989.
- "Phase Separation, Structure and Superconductivity in Oxygen-Annealed La₂CuO_{4+δ}," presented at the Gordon Research Conference on Superconductivity, Oxnard, CA, January 4–8, 1993.
- "Localized Holes in Superconducting Lanthanum Cuprate," presented at the Gordon Research Conference on Superconductivity, Ventura, CA, January 12–17, 1997.
- 4. "Glassy Spin Freezing in Lanthanum Cuprate" presented at the Gordon Research Conference on Superconductivity, Oxford, England, 9–14 September 2001.
- "Scanned Probe Ferromagnetic Resonance Studies of Microscopic Ferromagnets," presented at the Gordon Research Conference on Magnetic Nanostructures, May 12–17, 2002 in Il Ciocco, Italy.
- 6. "Nanoscale scanning probe ferromagnetic resonance imaging using localized modes," Gordon Research Conference on Magnetic Nanostructures, Bates College, ME, 8–13 August 2010.
- 7. "Scanned Probe Ferromagnetic Resonance Imaging," Gordon Research Conference on Magnetic Resonance, 15 June 2011, University of New England, Biddeford, ME.

International Conferences and Workshops

- "Incommensurate Spin Fluctuations and Oxygen Doping in Super-Oxygenated La₂CuO_{4+δ}," presented at the Distinguished Visitors Workshop on Spin Effects in High Temperature Superconductors, University of Illinois at Urbana-Champaign April 2–4, 1992.
- 2. "Magnetism, Phase Separation, Local Structure and Superconductivity in Super-Oxygenated La₂CuO_{4+ δ}," presented at the International School of Solid State Physics Workshop: Aspects of Phase Separation in Cuprate Superconductors, May 6–13, 1992, Erice, Sicily.
- 3. "NMR Study of Local Structural Inhomogeneity in Metallic La₂CuO_{4+ δ}," presented at the *International Conference on Strongly Correlated Electron Systems*, August 16–19, 1993, La Jolla, California.
- 4. "NMR Study of Local Structural Inhomogeneity in Metallic La₂CuO_{4+ δ}," presented at the Second International Workshop on Phase Separation in Cuprate Superconductors, September 5–10, 1993 in Cottbus, Germany.
- 5. "Local Structure in Oxygen-Doped La₂CuO_{4+ δ}" presented at the International Workshop on Anharmonic Properties of High-T_c Cuprates, Bled, Slovenia, September 1–6, 1994.
- "Sub-surface Imaging with the Magnetic Resonance Force Microscope" presented at the Symposium on Quantum Fluids & Solids-95, Cornell University, June 12–17, 1995.
- "NMR Studies of the Cuprates: Localization of Doped Holes in Metallic La₂CuO_{4+δ} and An Examination of the Oxygen Relaxation Rate in YBa₂Cu₃O₇," presented at the *Third International Workshop on Phase Separation, Electronic* Inhomogeneities and Related Mechanisms for High-T_c Superconductors, Erice, Italy, July 9–15, 1995.
- "The Magnetic Resonance Force Microscope: Recent Experiments" presented at the Southeast Magnetic Resonance Conference, Tallahassee, FL, December 1, 1995.
- "Localized Holes in Superconducting Lanthanum Cuprate," presented at the International Conference on Stripes, Lattice Instabilities and High T_c Superconductivity, Rome, Italy, December 8–12, 1996.
- "Microscopic Characterization of Magnetic Materials Using Magnetic Resonance Force Microscopy," presented at the NATO Advanced Study Institute: Frontiers in Magnetism of Reduced Dimension Systems, Crimea, Ukraine, May 25–June 3, 1997.
- "Charge Inhomogeneity in Lanthanum Cuprate and Lanthanum Nickelate," presented at the Workshop on Spin-Charge-Lattice Coupling in Complex Electronic Materials, Los Alamos, NM, August 12–14, 1997.
- "Microscopic Characterization of Magnetic Materials Using Magnetic Resonance Force Microscopy," presented at the 4th International Conference on Magnetic Resonance Microscopy and Macroscopy, Albuquerque, NM, September 21–25, 1997.
- "Microscopic Characterization of Layered Magnetic Materials Using Magnetic Resonance Force Microscopy," presented at the 25th Conference on the Physics and Chemistry of Semiconductor Interfaces, Salt Lake City, Utah, 18–22 January 1998.
- 14. "Charge Inhomogeneity in Transition Metal Oxides," presented at the Second International Conference on Stripes and High T_c Superconductivity, Rome, Italy, 2-6 June 1998.
- "Microscopic Characterization of Magnetic Materials Using Magnetic Resonance Force Microscopy," presented at the 3rd International Symposium on Metallic Multilayers, Vancouver, British Columbia, Canada, 14–19 June 1998.

- "Magnetism of Charge-Striped 2D Transition Metal Oxides" presented at the Colloquium on Magnetic Resonance in High-T_c Superconductors, Engelberg, Switzerland, 17–21 January 1999.
- "High Resolution Scanned Probe Magnetic Resonance Microscopy," plenary talk presented at the Swiss-US workshop on *Tools and Simulations in Nanotechnology*, Zürich, Switzerland, 20–21 September 1999.
- "Inhomogeneous Low Frequency Spin Dynamics in La_{1.8-x}Eu_{0.2}Sr_xCuO₄" presented at the Symposium on *Itinerant and Localized States in HTSC* in Klosters, Switzerland, 6–10 April, 2000.
- "Glassy Spin Freezing in Lanthanum Cuprate," presented at the Workshop on High Temperature Superconductivity, Institute for Theoretical Physics, University of California, Santa Barbara, CA, August 14–18, 2000.
- "Glassy Spin Freezing and Stripe Order in Lanthanum Cuprate," presented at *Stripes 2000* in Rome, Italy, 25–30 September 2000.
- "The Magnetic Resonance Force Microscope: Readout for a Silicon-Based Nuclear-Spin Quantum Computer," presented at the International Conference on Experimental Implementation of Quantum Computation, Sydney Australia, 16–19 January, 2001.
- "Glassy Spin Freezing in Lanthanum Cuprate," presented at the Aspen Winter Physics Conference, Aspen, CO, January 21–27, 2001.
- 23. "Probing Materials with Magnetic Resonance," presented at the *The Future of Materials Physics* Workshop in honor of Zachary Fisk, August 13-15, 2001, Los Alamos, NM
- "Force-Detected Scanned Probe Magnetic Resonance Microscopy," presented at the Physical Phenomena at High Magnetic Fields-IV Conference, Santa Fe, New Mexico, October 19–25, 2001
- "Force Detected Scanned Probe Magnetic Resonance: The Magnetic Resonance Force Microscope," presented at *Physical Properties of Amyloid Diseases Workshop*, the University of California, San Francisco, CA November 29–December 1, 2001
- 26. "The Silicon-Based Nuclear Spin Quantum Computer," to be presented at the SPIE International Conference "Photonics West", San Jose, CA, Jan 20–25, 2002
- "The Silicon-Based Quantum Computer," presented at the 3rd Annual Conference of the Southwest Quantum Information and Technology Network, NIST, Boulder, CO, March 8-10, 2002.
- "Ultrasensitive Electron Spin Resonance with the Magnetic Resonance Force Microscope," presented at EPR 2005, Columbus, OH, on 7 September 2005.
- "The Magnetic Resonance Force Microscope: A New Tool for High Resolution Materials Studies," presented at the 135th Annual Meeting of *The Minerals, Metals & Materials Society* (*TMS*), San Antonio, TX, March 13, 2006.
- "The Magnetic Resonance Force Microscope: A New Tool for High Resolution Materials Studies" presented at the Summer School on Magnetic Resonance Force Microscopy, Ithaca, NY, June 23, 2006
- "Ultrasensitive Magnetic Resonance Detection with Micromechanical Cantilevers" presented at the Symposium on Nonlinear Dynamics of Nanosystems at Chemnitz, Germany, August 29, 2007.
- 32. "Submicron Ferromagnetic Resonance Imaging Using Scanned Probe MRFM," presented at the 2007 Aspen Conference on Spins in Nanostructures, Aspen, CO, January 2007

- 33. "Scanned Probe Ferromagnetic Resonance Imaging," presented at the Third International Workshop on Nanomagnetism, Coma Ruga, Spain, 2 July 2007
- 34. "The Spirit of Adventure in the Search for Truth: Magnetic Resonance Studies of Condensed Matter," presented at the Conference honoring Bob Richardson, 12–13 April 2008, Ithaca, NY
- "Mechanisms of FMR imaging," invited presentation, International Conference on Nanoscience & Technology 21–25 July, 2008
- 36. "Scanned Probe Magnetic Resonance Imaging and Spectroscopy of Materials," invited presentation at the DOE sponsored Workshop on Frontiers of Atomic-Scale Functionality Imaging 28–30 September, 2008, Annapolis, MD
- 37. "Scanned Probe Magnetic Resonance Imaging and Spectroscopy of Materials," invited presentation at the International Conference on *Physics and Chemistry of Surfaces and Interfaces*, January 9, 2009, Santa Barbara, CA
- 38. "Scanned Probe Magnetic Resonance" presented at the Conference on Functional Materials by Design, Los Alamos National Lab, 20 January, 2009
- "Ferromagnetic Resonance Imaging," presented at the Workshop Molecular Imaging 2009: Routes to Three-Dimensional Imaging of Single Molecules, August 9–13, 2009, Ithaca NY
- "Generation of Localized Ferromagnetic Resonance Modes for Scanned Probe Imaging," to be presented at the Workshop: Opportunities for Magnetism in MEMS/NEMS, Argonne National Laboratory, 16–17 April 2010
- 41. "Nanoscale scanned probe ferromagnetic resonance imaging using localized modes," to be presented at the 3rd nano-MRI research conference: Exploring the Frontiers of Magnetic Resonance Imaging to be held at Le Tremblay sur Mauldre, France, 12–16 July 2010
- "Scanned probe imaging of spin physics," presented at the International Workshop on Novel Magnetic Materials, Leibniz Institute for Solid State and Materials Research, 23–25 August 2010, Dresden, Germany
- 43. "Localized Ferromagnetic Resonance Modes for Scanned Probe Imaging," 55th Annual Conference on Magnetism & Magnetic Materials, 14–18 November 2010, Atlanta, GA
- 44. "Spin Transport Driven by Magnetization Dynamics: Nanoscale studies of spin dynamics," invited talk presented at the 8th ASRC International Workshop on Spin Mechanics, Tokai, Japan, 24–26 February 2013
- "Spin dynamics and transport in nanoscale volumes," invited talk presented at the 2014 Annual Meeting of the AAAS, 13–17 February 2014, Chicago, IL
- "Probing the Influence of Interfaces in Spin Pumping," SPIE Spintronics VII, 17 21 August 2014, San Diego, California
- "The Role of Interfaces in Dynamic Spin Transport," 59th Annual Magnetism and Magnetic Materials Conference, 3–7 November 2014, Honolulu, Hawaii

Colloquia and Seminars

- "Magnetism in YBa₂Cu₃O_{7-y}: Insights from NMR" at the Physics and Theoretical Division Colloquium, Los Alamos National Lab, March 1990.
- 2. "¹³⁹La Magnetic Resonance Studies of Single Crystal La₂CuO_{4+ δ}", Physics Department, Northwestern University, Evanston Illinois, March 18, 1991.

- 3. "¹³⁹La Magnetic Resonance Studies of Single Crystal La₂CuO_{4+ δ}", Materials Science Division, Argonne National Laboratory, March 19, 1991.
- "NMR Studies of the High Temperature Superconductors YBa₂Cu₃O_{7-y}," Joint Los Alamos National Laboratory and Sandia National Laboratories Office of Basic Energy Sciences Materials Sciences Information and Review Meeting, May 29–30, 1991.
- 5. "Magnetism, Phase Separation, Local Structure and Superconductivity in Super-Oxygenated $La_2CuO_{4+\delta}$," presented at the Theory Institute of the Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, May 18, 1992.
- 6. "Magnetism, Phase Separation, Local Structure and Superconductivity in Super-Oxygenated $La_2CuO_{4+\delta}$," presented at the Solid State Physics Laboratory of the University of South Paris, Orsay, France, May 25, 1992.
- 7. "NMR Study of Local Structure in Metallic La₂CuO_{4+ δ}," presented at the University of Köln, September 16, 1993.
- 8. "NMR Study of Local Structure and Charge Distribution in Metallic $La_2CuO_{4+\delta}$," presented at the Condensed Matter Physics Department, California Institute of Technology, January 11, 1994.
- 9. "NMR Study of Local Structure and Charge Distribution in Metallic $La_2CuO_{4+\delta}$," presented at the Physics Department, University of California at Riverside, January 13, 1994.
- 10. "Phase Separation and Local Structure in Oxygen-Doped $La_2CuO_{4+\delta}$," presented to the Physics Department at the University of California at Los Angeles, May 18, 1994.
- "An Examination of the Oxygen Relaxation Rate in YBa₂Cu₃O₇" presented to the Physics Department, University of Florida, Gainesville, FL, November 27, 1995.
- 12. "The Magnetic Resonance Force Microscope: Recent Experiments" presented to the Physics Department, University of Florida, Gainesville, FL, November 28, 1995.
- "Localized Holes in Superconducting Lanthanum Cuprate," presented at the Condensed Matter Physics Seminar, Physics Department, University of Illinois at Urbana/Champaign, February 21, 1997.
- "Doped Holes and Stripes in 2D Cuprates and Nickelates," presented at the Condensed Matter Physics Seminar, Department of Physics, Florida State University and National High Magnetic Field Laboratory, Tallahassee, FL, April 11, 1997.
- 15. "The Magnetic Resonance Force Microscope: A New Probe of Magnetic Materials," presented at the Condensed Matter Seminar, Department of Physics, The Ohio State University, Columbus, OH, November 12, 1997.
- 16. "The Magnetic Resonance Force Microscope: A New Probe of Magnetic Materials," presented at the Physics Colloquium, Texas A&M University, College Station, TX, December 4, 1997.
- 17. "Consequences of Inhomogeneous Charge Structures for Magnetism in 2D Transition Metal Oxides from NMR" presented at the University of Köln, Köln, Germany, May 25, 1998.
- "Consequences of Inhomogeneous Charge Structures for Magnetism in 2D Transition Metal Oxides from NMR" presented at the University of Augsburg, Augsburg, Germany, May 27, 1998.
- 19. "The Magnetic Resonance Force Microscope: A New Probe of Magnetic Materials," presented at the University of Zürich, Zürich, Switzerland, May 28, 1998.

- "The Magnetic Resonance Force Microscope: A New Approach to Microscopic Subsurface Imaging," Physics Department Colloquium presented at the University of California, Davis, February 22, 1999.
- "Magnetism of Charge-Striped 2D Transition Metal Oxides," presented at the University of California, Riverside, February 23, 1999.
- "Magnetism of Charge-Stripe Ordered Transition Metal Oxides," presented at Solid State Sciences Seminar, Caltech, Pasadena, CA May 25, 1999.
- "High Resolution Scanned Probe Magnetic Resonance Microscopy," Physics Colloquium, The Ohio State University, Columbus, OH, November 2, 1999.
- 24. "Inhomogeneous Low Frequency Spin Dynamics in La_{1.8-x}Eu_{0.2}Sr_xCuO₄," Physics Colloquium, University of California, San Diego, 8 March, 2000.
- "The Silicon-Based Nuclear Spin Quantum Computer," presented at the Physics Colloquium, Boston College, April 26, 2000.
- "Glassy Spin Freezing and Stripe Order in Lanthanum Cuprate," presented at the UCLA Solid State Seminar, May 10, 2000.
- "Glassy Spin Freezing in Lanthanum Cuprate," presented at the University of Köln, Köln, Germany, October 2, 2000.
- 28. "Magnetic Resonance Readout in the Silicon-Based Nuclear Spin Quantum Computer," presented at the University of Stuttgart, Stuttgart, Germany October 4, 2000.
- 29. "Glassy Spin Freezing in Lanthanum Cuprate," presented at the Max Planck Institute, Stuttgart, Germany, October 5, 2000.
- "The Magnetic Resonance Force Microscope: Imaging Magnetic Materials," presented at the Ohio State University, November 20, 2000.
- "Glassy Spin Freezing in Lanthanum Cuprate," presented to the Applied Physics Department, Stanford University, November 30, 2000.
- 32. "Magnetic Resonance Readout in the Silicon-Based Nuclear Spin Quantum Computer," presented at the University of California, San Diego, La Jolla, CA, February 14, 2001.
- "High Resolution Scanned Probe Magnetic Resonance," presented to the Department of Radiology, The Ohio State University, Columbus, OH, May 29, 2001.
- 34. "Force Detected Scanned Probe Magnetic Resonance: The Magnetic Resonance Force Microscope," presented at the University of California, Santa Barbara, May 25, 2001.
- 35. "Force-Detected Scanned Probe Magnetic Resonance Microscopy," presented at the University of Illinois at Urbana/Champaign on October 29, 2001, Urbana, Illinois.
- 36. "Force-Detected Scanned Probe Magnetic Resonance Microscopy: The Magnetic Resonance Force Microscope," presented at Cornell University on December 18, 2001, Ithaca, NY.
- 37. "Force-Detected Scanned Probe Magnetic Resonance Microscopy," Department of Physics Colloquium presented at the University of Akron September 4, 2003
- "Force-Detected Scanned Probe Magnetic Resonance Microscopy," Physics Colloquium, Kenyon College, January 23, 2004
- "Force-Detected Scanned Probe Magnetic Resonance Microscopy," Physics Colloquium, University of Wisconsin-Madison, January 30, 2004

- 40. "Scanned Probe Magnetic Resonance: The Magnetic Resonance Force Microscope," Condensed Matter Physics Seminar presented at Case Western Reserve University, April 18, 2005.
- "Force-Detected Scanned Probe Magnetic Resonance Microscopy," Colloquium presented at Miami University of Ohio, October 19, 2005.
- 42. "Ultrasensitive Magnetic Resonance Detection with Micromechanical Cantilevers" Seminar presented at the Institute for Solid State Research of the Leibniz Institute for Solid State and Materials Research, Dresden, Germany, September 1, 2006.
- "Submicron Ferromagnetic Resonance Imaging Using Scanned Probe MRFM," Solid state seminar presented at the Department of Physics, Cornell University, Ithaca, NY, 14 November 2006.
- 44. "Submicron Ferromagnetic Resonance Imaging Using Scanned Probe MRFM," presented at the Los Alamos National Lab Materials Colloquium, Los Alamos, NM, 21 February, 2007
- "Scanned Probe Magnetic Resonance Imaging for Magnetoelectronics," Colloquium, Department of Physics, Kent State University, Kent, OH, 12 April, 2007
- 46. "Scanned Probe Magnetic Resonance Imaging for Magnetoelectronics," Seminar presented at the Leibniz Institute for Solid State and Materials Research, Dresden, Germany, 5 July, 2007
- "Scanned Probe Magnetic Resonance Imaging for Magnetoelectronics," Colloquium, Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 10 September, 2007
- "Scanned Probe Magnetic Resonance Imaging for Magnetoelectronics," Colloquium, Department of Physics, Wayne State University, Detroit, MI, 6 December 2007
- 49. "Scanned Probe Magnetic Resonance Imaging for Magnetoelectronics," Colloquium, Department of Physics, Northwestern University, Evanston, IL, 1 February 2008
- 50. "Scanned Probe Ferromagnetic Resonance," Condensed Matter Seminar, Department of Physics and Astronomy, Michigan State University, East Lansing, MI, October 13, 2008
- "Scanned Probe Magnetic Resonance", Colloquium, University of Illinois, Urbana-Champaign, IL, January 30, 2009
- "Scanned Probe Magnetic Resonance Imaging for Magnetoelectronics," Colloquium, Department of Physics, Penn State University, 19 February 2009
- 53. "Scanned Probe Ferromagnetic Resonance Imaging," Condensed Matter Physics Seminar, University of California, Riverside, 20 April, 2011
- 54. "Scanned Probe Ferromagnetic Resonance Imaging," Physics Department Colloquium, University of California, Irvine, 21 April, 2011
- 55. "Scanned Probe Ferromagnetic Resonance Imaging," Center for Nonlinear Studies Colloquium, Los Alamos National Laboratory, Los Alamos, NM, 31 May 2011
- 56. "Spin Transport Driven by Magnetization Dynamics," Colloquium presented at Boston College Department of Physics, Chestnut Hill, MA, December 5, 2012
- 57. "Spin dynamics and transport in nanoscale volumes," Condensed Matter Physics Seminar, UCLA Department of Physics & Astronomy presented 17 January 2014, Los Angeles, CA
- "Spin dynamics and transport in nanoscale volumes," Materials Colloquium, Los Alamos National Laboratory, 22 January, 2014, Los Alamos, NM

Publications

- "Spin aligned hydrogen: Some considerations for ESR vs. NMR experiments and preliminary observation of H↑ at low temperature," B. Yurke, D. Igner, E. Smith, B. Johnson, J. Denker, C. Hammel, D. Lee and J. Freed, *Journal de Physique (Paris) Colloque* 41, C7-177 (1980).
- "Fabrication of 0.25 μm metal particles," P. Chris Hammel and Robert C. Richardson, *Physica* 107B, 611 (1981).
- "Magnetic coupling between ³He and ¹⁹F at low temperatures," P.C. Hammel, M.L. Roukes, Y. Hu, T.J. Gramila, T. Mamiya and R.C. Richardson, *Phys. Rev. Lett.* **51**, 2124 (1983).
- "Relaxation as an interface probe in ³He-substrate systems," P.C. Hammel, T.J. Gramila, Y. Hu and R.C. Richardson, Proc. of the 17th International Conference on Low Temperature Physics (North-Holland, Amsterdam, 1984), p. 753.
- "Surface relaxation of ³He on CaF₂," T.J. Gramila, Y. Hu, P.C. Hammel, and R.C. Richardson, *ibid*, p. 755.
- "Relaxation of nuclear magnetization of liquid ³He-substrate systems," P.C. Hammel and R.C. Richardson, *Phys. Rev. Lett.* 52, 1441 (1984).
- "¹⁹F nuclear relaxation at the interface between liquid ³He and a solid substrate at high field and low temperature," P.C. Hammel, P.L. Kuhns, O. Gonen and J.S. Waugh, *Phys. Rev. B* 34, 6453 (1986).
- "Unexpectedly rapid ¹⁹F spin-lattice relaxation in CaF₂ below 1K," P.L. Kuhns, P.C. Hammel, O. Gonen, and J.S. Waugh, *Phys. Rev.* B **35**, 4591 (1987).
- "Nuclear spin lattice relaxation in ³He-⁴He mixtures," Mary Lowe, P.C. Hammel, R.E. Ecke, K. Bedell and M. Takigawa, *Phys. Rev.* B 37, 2281 (1988).
- "Copper nuclear quadrupole resonance in GdBa₂Cu₃O₇: Determination of Site Assignment," P.C. Hammel, M. Takigawa, R.H. Heffner and Z. Fisk, *Phys. Rev. B* 38, 2832 (1989).
- "Anisotropic Cu Knight shift and magnetic susceptibility in the normal state of YBa₂Cu₃O₇," M. Takigawa, P.C. Hammel, R.H. Heffner, Z. Fisk, J.L. Smith, and R.B. Schwarz, *Phys. Rev.* B **39**, 300 (1989).
- "Spin susceptibility in superconducting YBa₂Cu₃O₇ from ⁶³Cu Knight shift," by M. Takigawa, P.C. Hammel, R.H. Heffner and Z. Fisk, *Phys. Rev. B* **39**, 7371 (1989).
- "Anomalous temperature dependence of Cu NMR line width and magnetization in YBa₂Cu₃O_{7-δ}," M. Takigawa, P.C. Hammel, R.H. Heffner, Z. Fisk, J.D. Thompson and M. Maley, *Physica C* 162–164, 175 (1989).
- "NMR relaxation rates at copper and oxygen sites in YBa₂Cu₃O₇," P.C. Hammel, M. Takigawa, R.H. Heffner, Z. Fisk and K.C. Ott, *Physica C* 162–164, 177 (1989).
- 15. " NMR study of $YBa_2Cu_3O_{7-\delta}$," M. Takigawa, P.C. Hammel, R.H. Heffner, Z. Fisk, K.C. Ott, and J.D. Thompson, *Physica C* **162–164**, 853 (1989).
- ^{«17}O NMR study of local spin susceptibility in aligned YBa₂Cu₃O₇ powder," M. Takigawa, P.C. Hammel, R.H. Heffner, Z. Fisk, K.C. Ott and J.D. Thompson, *Phys. Rev. Lett.* 63, 1865 (1989).
- "Spin dynamics at oxygen sites in YBa₂Cu₃O₇," P.C. Hammel, M. Takigawa, R.H. Heffner, Z. Fisk and K.C. Ott, *Phys. Rev. Lett.* 63, 1992 (1989).

- "Observation of Cu NMR in Antiferromagnetic PrBa₂Cu₃O₇: Evidence for Hole-Band Filling," A.P. Reyes, D.E. MacLaughlin, M. Takigawa, P.C. Hammel, R.H. Heffner, J.D. Thompson, J.E. Crow, A. Kebede, T. Mihalisin, J. Schwegler, *Phys. Rev. B* 42, 2688 (1990).
- "Normal state ⁶³Cu Knight Shift and Hole-band Modification in Y_{1-x}Pr_xBa₂Cu₃O₇,"
 A.P. Reyes, D.E. MacLaughlin, M. Takigawa, P.C. Hammel, R.H. Heffner, J.D. Thompson, J.E. Crow, A. Kebede, T. Mihalisin, and J. Schwegler, J. Appl. Phys. 67, 5032 (1990).
- ⁽¹³⁹La NMR study of Phase Separation in Single Crystal La₂CuO_{4.032}," P.C. Hammel, A.P. Reyes, Z. Fisk, M. Takigawa, J.D. Thompson, R.H. Heffner, S-W. Cheong and J.E. Schirber, *Phys. Rev. B* 42, 6781 (1990).
- "A Low Temperature NMR Probe for Use in a Dilution Refrigerator," P.L. Kuhns, S-H Lee, C. Coretsopoulos, P.C. Hammel, O. Gonen, and J.S. Waugh, *Rev. Sci. Instr.* 62, 2159 (1991).
- ^{"63}Cu NMR and Hole Depletion in the Normal State of Yttrium Rich PrBa₂Cu₃O₇," A.P. Reyes, D.E. MacLaughlin, M. Takigawa, P.C. Hammel, R.H. Heffner, J.D. Thompson and J.E. Crow, *Phys. Rev.* B 43, 2989 (1991).
- "Cu and O NMR Studies of the Magnetic Properties of YBa₂Cu₃O_{6.63}," M. Takigawa, A.P. Reyes, P.C. Hammel, J.D. Thompson, R.H. Heffner, Z. Fisk, K.C. Ott, *Phys. Rev. B* 43, 247 (1991).
- 24. "¹³⁹La NMR and NQR Study of the Temperature Dependent Structure of La₂CuO_{4+δ}," P.C. Hammel, E.T. Ahrens, A.P. Reyes, R.H. Heffner, P.C. Canfield, S-W. Cheong and Z. Fisk, and J.E. Schirber, *Physica C* 185–189, 1095 (1991).
- Comment on "Order-Disorder Structural Phase Transition in La_{2-x}Sr_xCu O_{4+δ} at 150 K," by D.E. MacLaughlin, P.C. Hammel, J.P. Vithayathil, P.C. Canfield, Z. Fisk, R.H. Heffner, A.P. Reyes, J.D. Thompson, and S-W. Cheong, *Phys. Rev. Lett.* 67, 525, (1991).
- 26. "Phase Separation, Structure and Superconductivity in Oxygen-Annealed La₂CuO_{4+δ}," P.C. Hammel, E.T. Ahrens, A.P. Reyes, J.D. Thompson, D.E. MacLaughlin, Z. Fisk, P.C. Canfield, and J.E. Schirber, in *Phase Separation in Cuprate Superconductors*, edited by K. Alex Müller and G. Benedek, p. 139 (World Scientific Publishing, Singapore, 1993).
- 27. "Pressure Effects on NQR Parameters in Oxygen-deficient YBa₂Cu₃O_{6.62}," A.P. Reyes, E.T. Ahrens, P.C. Hammel, R.H. Heffner and M. Takigawa, in *Lattice Effects in High-T_c Super-conductors*, edited by Y. Bar-Yamm, T. Egami, J. Mustre-de Leon and A.R. Bishop, p. 143 (World Scientific Publishing, Singapore, 1993).
- "NQR Study of Local Structure and Cooling Rate Dependent Superconductivity in La₂CuO_{4+δ}," A.P. Reyes, E.T. Ahrens, P.C. Hammel, J.D. Thompson, P.C. Canfield, Z. Fisk, and J.E. Schirber, J. Appl. Phys. **73**, 6323 (1993).
- "Thermal History Dependent Superconductivity and Local Structure in La₂CuO_{4+δ}," E.T. Ahrens, A.P. Reyes, P.C. Hammel, J.D. Thompson, P.C. Canfield, Z. Fisk, J.E. Schirber, *Physica C* 212, 317 (1993).
- "NMR Determination of the B substitutional site in U(Be_{1-x}B_x)₁₃," E.T. Ahrens, P.C. Hammel, R.H. Heffner, A.P. Reyes, J.L. Smith and W.G. Clark, *Phys. Rev. B* 48, 6691 (1993).
- "NMR Study of Local Structure in Metallic La₂CuO_{4+δ}," P.C. Hammel, A.P. Reyes, S-W. Cheong, Z. Fisk and J.E. Schirber, *Phys. Rev. Lett.* **71**, 440 (1993).
- "Phase Separation and Superconductivity in La₂CuO_{4+δ}: Effects of Oxygen Diffusion," A.P. Reyes, P.C. Hammel, E.T. Ahrens, J.D. Thompson, P.C. Canfield, Z. Fisk, and J.E. Schirber, J. Phys. Chem. Solids 54, 1393 (1993).

- "NMR Study of Oxygen-Doped La₂CuO_{4+δ}," P.C. Hammel, A.P. Reyes, E.T. Ahrens, D.E. MacLaughlin, J.D. Thompson, Z. Fisk, P.C. Canfield, S-W. Cheong, J.E. Schirber, *Physica B* 199 & 200, 235 (1994).
- 34. "Abrupt but Continuous Antiferromagnetic Transition in Nearly Stoichiometric La₂CuO_{4+δ}," D.E. MacLaughlin, J.P. Vithayathil, H.B. Brom and J.C.J.M. de Rooy, P.C. Hammel, P.C. Canfield, A.P. Reyes, J.D. Thompson, and S-W. Cheong, *Phys. Rev. Lett.* **72**, 760-763 (1994).
- 35. "Microscopic Study of Local Structure and Charge Distribution in Metallic La₂CuO_{4+δ}," P.C. Hammel, A.P. Reyes, E.T. Ahrens, Z. Fisk, P.C. Canfield, and J.D. Thompson, in *Phase Separation in Cuprate Superconductors*, edited by E. Sigmund and K. Alex Müller, (Springer-Verlag, Berlin, Heidelberg 1994).
- "Observation of Vortex-Lattice Melting by NMR Spin-Lattice Relaxation in the Mixed-State," L.N. Bulaevskii, P.C. Hammel, and V.M. Vinokur, *Phys. Rev. B* 51, 15355 (1995).
- "Spin Susceptibility and Low-Lying Excitations in the Haldane-Gap Compound YBaNi₂O₅," T. Shimizu, D.E. MacLaughlin, P.C. Hammel, J.D. Thompson, and S-W. Cheong, *Phys. Rev.* B 52, R9835 (1995).
- "Oxygen Ordering and Phase Separation in La₂CuO_{4+δ}," B.W. Statt, P.C. Hammel, Z. Fisk, S-W. Cheong, F.C. Chou, and D.C. Johnston, and J.E. Schirber, *Phys. Rev.* B **52**, 15575 (1995).
- "Sub-surface imaging with the Magnetic Resonance Force Microscope," P.C. Hammel, Z. Zhang, G.J. Moore and M.L. Roukes, *Jour. of Low Temp. Phys.* 101, 59 (1995).
- 40. "⁹Be and ¹¹B NMR Study of Superconductivity in Boron Doped UBe₁₃," E.T. Ahrens, R.H. Heffner, P.C. Hammel, A.P. Reyes, J.L. Smith, and W.G. Clark, *Physica B* **206** & **207**, 589 (1995).
- "Observation of Ferromagnetic Resonance in a Microscopic Sample Using Magnetic Resonance Force Microscopy," Z. Zhang, P.E. Wigen and P.C. Hammel, *Appl. Phys. Lett.* 68, 2005 (1996).
- "Sensitivity and Spatial Resolution in Magnetic Resonance Force Microscopy," Z. Zhang, M.L. Roukes and P.C. Hammel, J. Appl. Phys. 80, 6931 (1996).
- "Application of a Novel rf Coil Design to the Magnetic Resonance Force Microscope," Z. Zhang, P.C. Hammel and G.J. Moore, *Rev. Sci. Instr.* 67, 3307 (1996).
- 44. "Local microstructure and the cuprate spin gap puzzle," P.C. Hammel and D.J. Scalapino, *Phil. Mag. B* **74**, 523 (1996).
- "Oxygen nuclear magnetic resonance on the 90 K plateau of YBa₂Cu₃O_{7-δ}," J. A. Martindale and P.C. Hammel, *Phil. Mag. B* 74, 573 (1996).
- "Magnetic Excitations of the Doped-Hole State in Diamagnetic La₂Cu_{0.5} Li_{0.5}O₄," Y. Yoshinari, P.C. Hammel, J.A. Martindale, E. Moshopoulou, J.D. Thompson, J.L. Sarrao and Z. Fisk, *Phys. Rev. Lett.* **77**, 2069 (1996).
- 47. "Properties of Li-doped La₂CuO₄," J.L. Sarrao, D.P. Young, Z. Fisk, P.C. Hammel, Y. Yoshinari, and J.D. Thompson, *Proceedings of the 10th Anniversary HTS Workshop on Physics*, *Materials, and Applications*, ed. C.W. Chu and K.A. Müller (World Scientific, Singapore, 1997) p. 107.
- 48. "Vortex Melting in Polycrystalline YBa₂Cu₃O₇ from ¹⁷O NMR," A.P. Reyes, X.P. Tang, H.N. Bachman, W.P. Halperin, J.A. Martindale, P.C. Hammel, *Phys. Rev.* B **55**, 14737 (1997).
- 49. "Magnetic Resonance Force Microscopy with a Permanent Magnet on the Cantilever," Z. Zhang and P.C. Hammel, *IEEE Trans. Magn.* **33**, 4047 (1997).

- 50. "Localized Holes in Superconducting Lanthanum Cuprate," P.C. Hammel, B.W. Statt, R.L. Martin, S-W. Cheong, F.C. Chou, and D.C. Johnston, *Phys. Rev.* B 57, R712 (1998).
- "Temperature Dependence of the Anisotropic Planar Oxygen Nuclear Spin-Lattice Relaxation Rate in YBa₂Cu₃O_{7-δ}," J.A. Martindale, P.C. Hammel, W.L. Hults and J.L. Smith, *Phys. Rev.* B 57, 11769 (1998).
- "Towards a Magnetic Resonance Force Microscope Employing a Ferromagnetic Probe Mounted on the Force Detector," Z. Zhang and P.C. Hammel, *Solid State Nuclear Magnetic Resonance* 11, 65 (1998).
- 53. "The Magnetic Resonance Force Microscope: A New Microscopic Probe of Magnetic Materials," P. C. Hammel, Z. Zhang, M. Midzor, M. L. Roukes, P. E. Wigen and J. R. Childress, *Frontiers in Reduced Dimensional Magnetism*, edited by V. G. Bar'yakthar, P. E. Wigen and N. A. Lesnik, Kluwer Academic Publishers (Dordrecht), p. 441 (1998).
- 54. "Suppression of Antiferromagnetic Order by Light Hole Doping in La₂Cu_{1-x}Li_xO₄: A ¹³⁹La NQR Study," B.J. Suh, P.C. Hammel, Y. Yoshinari, J.D. Thompson, J.L. Sarrao, and Z. Fisk, *Phys. Rev. Lett.* 81, 2791 (1998).
- "Ferromagnetic Resonance Imaging of Co Films Using Magnetic Resonance Force Microscopy," B. J. Suh, P. C. Hammel, Z. Zhang, M. M. Midzor, M. L. Roukes, and J. R. Childress, J. Vac. Sci. Tech. B 16, 2275 (1998).
- "Ferromagnetic Resonance Force Microscopy on Microscopic Co Single Layer Films," Z. Zhang, P. C. Hammel, M. Midzor, M. L. Roukes, and J. R. Childress, *Appl. Phys. Lett.* **73**, 2036 (1998).
- 57. "Magnetic field independence of the spin gap in YBa₂Cu₃O_{7-δ}," K. Gorny, O. M. Vyaselev, J. A. Martindale, C. H. Pennington, P. C. Hammel, W. L. Hults, J. L. Smith, P. L. Kuhns, A. P. Reyes, and W. G. Moulton, *Phys. Rev. Lett.* 82, 177 (1999).
- "Nuclear Magnetic Resonance Study of U(Be, B)₁₃ in the Normal and Superconducting States,"
 E. T. Ahrens, R. H. Heffner, P. C. Hammel, A. P. Reyes, J. D. Thompson, J. L. Smith, and
 W. G. Clark, *Phys. Rev. B* 59, 1432 (1999).
- 59. "Local Magnetic and Structural Properties of the LTO \rightarrow LTT Transition: A ¹³⁹La NQR Study in Lightly Hole-Doped La_{1.8-x}Eu_{0.2}Sr_xCuO₄," B. J. Suh, P. C. Hammel, M. Hücker and B. Büchner, *Phys. Rev.* B **59**, R3952 (1999).
- "Magnetism of Stripe-Ordered La_{5/3}Sr_{1/3}NiO₄," Y. Yoshinari, P. C. Hammel and S-W. Cheong, Phys. Rev. Lett. 82, 3536 (1999).
- 61. "Spin freezing and recovery of sublattice magnetization in lightly doped lanthanum cuprate," B. J. Suh, P. C. Hammel, J. L. Sarrao, J. D. Thompson, Z. Fisk, M. Hücker and B. Büchner, in *Physical Phenomena at High Magnetic Fields*, Z. Fisk, L. Gor'kov, J.R. Schrieffer, eds., World Scientific Publishing Co. Pte. Ltd., (Singapore) p. 336 (1999).
- 62. "¹³⁹La NMR evidence for sensitivity of local structure to magnetic field in La_{0.5}Ca_{0.5}MnO₃" Y. Yoshinari, P.C. Hammel, J.D. Thompson and S-W. Cheong, *Phys. Rev. B* **60**, 9275 (1999).
- 63. "Mobile Anti-phase Domains in Lightly Doped Lanthanum Cuprate," P. C. Hammel, B. J. Suh and J. L. Sarrao, and Z. Fisk, *Stripes and Related Phenomena*, edited by A. Bianconi and N. Saini (Kluwer Academic/Plenum Publishers, New York, 2000) p. 295.
- 64. "Spin Dynamics in the LTT Phase of ≈ 1/8 Doped Single Crystal La_{1.67}Eu_{0.2}Sr_{0.13}CuO₄,"
 B. J. Suh, P. C. Hammel, M. Hücker, B. Büchner, U. Ammerahl, and A. Revcolevschi, *Phys. Rev. B* 61, R9265 (2000).

- "Imaging Mechanism of Force Detected FMR Microscopy," M.M. Midzor, P.E. Wigen, D. Pelekhov, W. Chen, P.C. Hammel and M.L. Roukes, J. Appl. Phys. 87, 6493 (2000)
- 66. "The Cu NMR echo decay in stripe ordered La_{1.65}Eu_{0.2}Sr_{0.15}CuO₄," N.J. Curro and P.C. Hammel, Physica C **341**, 1797 (2000).
- "La-139 NQR and NMR studies of the structural phase transitions in La_{1.8-x}Eu_{0.2}Sr_xCuO₄,"
 B.J. Suh and P.C. Hammel, Physica C 341, 2127 (2000).
- "Solid-state nuclear-spin quantum computer based on magnetic resonance force microscopy," G.P. Berman, G.D. Doolen, P.C. Hammel, and V.I. Tsifrinovich, *Phys. Rev. B* 61, 14694 (2000)
- "Inhomogeneous Low Frequency Spin Dynamics in La_{1.65}Eu_{0.2}Sr_{0.15}CuO₄," N.J. Curro, P.C. Hammel, B.J. Suh, M. Hücker, B. Büchner, U. Ammerahl, and A. Revcolevschi, *Phys. Rev. Lett.* 85, 642 (2000).
- "Evidence for Spiral Magnetic Order in the Heavy Fermion Material CeRhIn₅," N. J. Curro, P. C. Hammel, P. G. Pagliuso, J. L. Sarrao, J. D. Thompson and Z. Fisk, *Phys. Rev. B* 62, R6100 (2000).
- "Magnetic field independence of Cu(2) NMR spin-lattice relaxation rate in the normal state of optimally doped YBa₂Cu₃O_{7-δ}," K.R. Gorny, O.M. Vyaselev, C.H. Pennington, P.C. Hammel, W.L. Hults, J.L. Smith, J. Baumgartner, T.R. Lemberger, P. Klamut, B. Dabrowski, *Phys. Rev. B* 63, 4513 (2001), article no. 064513.
- 72. "Magnetic resonance force microscopy quantum computer with tellurium," G.P. Berman, G.D. Doolen, P.C. Hammel, V.I. Tsifrinovich, *Phys. Rev. Lett.* **86**, 2894 (2001).
- "Anomalous Magnetic NMR Shifts in CeCoIn₅," N.J. Curro, B. Simovic, P.C. Hammel, P.G. Pagliuso, J.L. Sarrao, J.D. Thompson, *Phys. Rev. B Rapid Communications* 6418, 0514 (2001).
- 74. "Superconductivity and magnetism in a new class of heavy-fermion materials," J.D. Thompson, R. Movshovich, Z. Fisk, F. Bouquet, N.J. Curro, R.A. Fisher, P.C. Hammel, H. Hegger, M.F. Hundley, M. Jaime, P.G. Pagliuso, C. Petrovic, N.E. Phillips and J.L. Sarrao, J. Magn. Magn. Mat. 226, 5 (2001).
- 75. "Static Stern-Gerlach effect in magnetic force microscopy" G.P. Berman, G.D. Doolen, P.C. Hammel and V.I. Tsifrinovich, *Phys. Rev. A* 6503, 2311 (2002)
- 76. "Probe-Sample Coupling in the Magnetic Resonance Force Microscope," A. Suter, D.V. Pelekhov, M.L. Roukes and P.C. Hammel, *Journal of Magnetic Resonance* 154, 210 (2002).
- 77. "Future probes in materials science" James W. Allen, Meigan Aronson, Gregory S. Boebinger, Collin L. Broholm, S. Lance Cooper, J.E. Crowe, P. Chris Hammel, Gerry Lander, *Physica B* 318, 12–23 (2002).
- 78. "Magnetic resonance force microscopy and the solid state quantum computer," D.V. Pelekhov, I. Martin, A. Suter, D.W. Reagor, and P.C. Hammel, *Proc. SPIE* 4656 p. 1-9, *Quantum Dot Devices and Computing*, James A. Lott, Nikolai N. Ledentsov, Kevin J. Malloy, Bruce E. Kane, Thomas W. Sigmon, Eds. (2002).
- "Magnetic-resonance force microscopy measurement of entangled spin states," G. P. Berman, F. Borgonovi, G. Chapline, P. C. Hammel, and V. I. Tsifrinovich, *Physical Review A* 66, 32106 (2002).
- "Theory of spin relaxation in magnetic resonance force microscopy," D. Mozyrsky, I. Martin, D. Pelekhov and P. C. Hammel, *Appl. Phys. Lett.* 82, 1278 (2003).

- "Application of magnetic resonance force microscopy cyclic adiabatic inversion for a single-spin measurement," G.P. Berman, F. Borgonovi, G. Chapline, S.A. Gurvitz, P.C. Hammel, D.V. Pelekhov, A. Suter and V.I. Tsifrinovich, *J. Phys. A: Mathematical and General* 36, 4417 (2003).
- 82. "Local structure of La_{1.65}Eu_{0.2}Sr_{0.15}CuO₄ determined by ⁶³Cu NMR spectroscopy and Van Vleck paramagnetism of Eu³⁺ ions, B. Simovič, M. Hücker, P.C. Hammel, B. Büchner, U. Ammerahl and A. Revcolevschi, *Phys. Rev. B* **67**, 224508 (2003).
- "Experimental evidence for a glass forming stripe liquid in the magnetic ground state of La_{1.65}Eu_{0.2}Sr_{0.15}CuO₄," B Simovič, P.C. Hammel, M. Hücker, B. Büchner and A. Revcolevschi, *Phys. Rev. B* 68, 012145 (2003).
- "The Magnetic-Resonance Force Microscope: A New Tool for High-Resolution, 3-D, Subsurface Scanned Probe Imaging," P. Chris Hammel, Denis V. Pelekhov, Philip E. Wigen, Timothy R. Gosnell, Melissa M. Midzor, and Michael L. Roukes, *Proceedings of the IEEE*, **91**, 789 (2003).
- "Interplay between freezing and superconductivity in the optimally doped La_{1.65}Eu_{0.2}Sr_{0.15}CuO₄ under hydrostatic pressure," B. Simovič, M. Nicklas, P. C. Hammel, M. Hücker, B. Büchner and J. D. Thompson, *Europhys. Lett.*, 66 722728 (2004).
- "Seeing Single Spins," P.C. Hammel, *Nature* **430**, 300 (2004).
- 87. "Light-free magnetic resonance force microscopy for studies of electron spin polarized systems," Denis V. Pelekhov, Camelia Selcu, Palash Banerjee, Kin Chung Fong, P. Chris Hammel, Harish Bhaskaran and Keith Schwab, J. Magn. Magn. Mat., 286 324 (2005).
- "Perturbation of magnetostatic modes observed by ferromagnetic resonance force microscopy," R. Urban, A. Putilin, P.E. Wigen, S.-H. Liou, M.C. Cross, P.C. Hammel, and M.L. Roukes, *Phys. Rev. B* 73, 212410 (2006).
- "Origin of fourfold anisotropy in square lattices of circular ferromagnetic dots," G.N. Kakazei, Yu. G. Pogorelov, M.D. Costa, T. Mewes, P.E. Wigen, P.C. Hammel, V.O. Golub, T. Okuno and V. Novosad, *Physical Review B* 74, 60406-1-4 (2006)
- "Ferromagnetic resonance force microscopy studies of arrays of micron size permalloy dots," T. Mewes J. Kim, D. V. Pelekhov, G. N. Kakazei, P. E. Wigen, S. Batra, and P. C. Hammel, *Phys. Rev. B* 74, 144424 (2006)
- 91. "Ferromagnetic Resonance Force Microscopy," Philip E. Wigen, Michael L. Roukes and Peter C. Hammel, Book chapter in Spin Dynamics in Confined Magnetic Structures III, B. Hillebrands and A. Thiaville, eds., Springer-Verlag Berlin Heidelberg 2006
- "Low Temperature Magnetic Resonance Force Microscope: Design and Performance" E. Nazaretski, T. Mewes, D. V. Pelekhov, P. C. Hammel, and R. Movshovich, *AIP Conf. Proc.* 850, 1641 (2006)
- 93. "Magnetic resonance force microscopy studies in a thin permalloy film," E. Nazaretski, J.D. Thompson, D.V. Pelekhov, T. Mewes, P.E. Wigen, J. Kim, M. Zalalutdinov, J.W. Baldwin, B. Houston, P.C. Hammel and R. Movshovich, J. Magn. Magn. Mat., 310 e941 (2007)
- 94. "Real time cantilever signal frequency determination using digital signal processing," Yu. Obukhov, K.C. Fong, D. Daughton, and P.C. Hammel, J. Appl. Phys., 101 034315 (2007)

- 95. "Temperature-dependent magnetic resonance force microscopy of a thin Permalloy film," E. Nazaretski, J.D. Thompson, R. Movshovich, M. Zalalutdinov, J.W. Baldwin, B. Houston, T. Mewes, D.V. Pelekhov, P. Wigen, and P.C. Hammel, J. App. Phys. 101 074905 (2007)
- 96. "The Magnetic Resonance Force Microscope," P.C. Hammel and D.V. Pelekhov, Book Chapter, Handbook of Magnetism and Advanced Magnetic Materials, Helmut Kronmüller and Stuart Parkin, eds., Volume 5: Spintronics and Magnetoelectronics, John Wiley & Sons, Ltd. ISBN: 978-0-470-02217-7
- 97. "Ferromagnetic resonance force microscopy on a thin permalloy film," E. Nazaretski, I. Martin, R. Movshovich, D.V. Pelekhov, P.C. Hammel, M. Zalalutdinov, J.W. Baldwin, B. Houston and T. Mewes, *Appl. Phys. Lett.* **90**, 234105 (2007)
- 98. "Detection of higher order modulation harmonics in magnetic resonance force microscopy," T. Mewes, C.K.A. Mewes, E. Nazaretski, J. Kim, K.C. Fong, Y Obukhov, D.V. Pelekhov, P.E. Wigen and P.C. Hammel, J. App. Phys. 102 033911 (2007)
- "Magnetic resonance force microscopy studies in a thin permalloy film," E. Nazaretski, J.D. Thompson, D.V. Pelekhov, T. Mewes, P.E. Wigen, J. Kim, M. Zalalutdinov, J.W. Baldwin, B. Houston, P.C. Hammel and R. Movshovich, J. Magn. Magn. Mat., 310, E941-E943 (2007)
- 100. "Magnetic Force Microscopy of Superparamagnetic Nanoparticles," S. Schreiber, M. Savla, D.V. Pelekhov, C. Selcu, P.C. Hammel, G. Agarwal, *Small* 4 270-278 (2008)
- 101. "Ferromagnetic resonance force microscopy studies of a continuous permalloycobalt film," E. Nazaretski, E.A. Akhadov, K.C. Cha, D.V. Pelekhov, I. Martin, K.S. Graham, P.C. Hammel and R. Movshovich, *Phys. Stat. Sol. A*, **1–4** (2008) / DOI 10.1002/pssa.200723465
- 102. "Local Ferromagnetic Resonance Imaging with Magnetic Resonance Force Microscopy," Yu. Obukhov, D.V. Pelekhov, J. Kim, P. Banerjee, I. Martin, E. Nazaretski, R. Movshovich, S. An, T.J. Gramila, S. Batra and P.C. Hammel, *Phys. Rev. Lett.*, **100** 197601 (2008)
- 103. "Spatial characterization of the magnetic field profile of a probe tip used in magnetic resonance force microscopy," E. Nazaretski, E.A. Akhadov, I. Martin, D.V. Pelekhov, P.C. Hammel and R. Movshovich, *Applied Physics Letters* **92** 214104 (2008)
- 104. "Manipulating spins by cantilever synchronized frequency modulation: A variable resolution magnetic resonance force microscope," K.C. Fong, P. Banerjee, Yu. Obukhov, D.V. Pelekhov, and P.C. Hammel, *Applied Physics Letters* **93** 012506 (2008)
- 105. "Probing arrays of circular magnetic microdots by ferromagnetic resonance," G.N. Kakazei, T. Mewes, P.E. Wigen, P.C. Hammel, A.N. Slavin, Yu. G. Pogorelov, M.D. Costa, V.O. Golub, K. Yu. Guslienko, and V. Novosad, *Journal Of Nanoscience And Nanotechnology* 8 2811–2826 (2008)
- 106. "Molecular packing and magnetic properties of lithium naphthalocyanine crystal: Hollow channels enabling permeability and paramagnetic sensitivity to molecular oxygen," Ramasamy P. Pandian, Michelle Dolgos, Camelia Marginean, Patrick M. Woodward, P. Chris Hammel, Periakaruppan T. Manoharan, and Periannan Kuppusamy, J. Mater. Chem., 19, 41384147 (2009) DOI: 10.1039/B800602D
- 107. "Nanoscale MRI," P.C. Hammel, Nature 458 844 (2009)
- 108. "Effect of localized magnetic field on the uniform ferromagnetic resonance mode in a thin film," Yu. Obukhov, D. V. Pelekhov, E. Nazaretski, R. Movshovich, and P.C. Hammel, *Applied Physics Letters* **94** 172508 (2009)

- 109. "Design of a variable temperature scanning force microscope," E. Nazaretski, K. S. Graham, J. D. Thompson, J. A. Wright, D. V. Pelekhov, P. C. Hammel and R. Movshovich, *Review of Scientific Instruments* 80 083704 (2009)
- 110. "Localized ferromagnetic resonance force microscopy in Permalloy-cobalt films,"
 E. Nazaretski, Yu. Obukhov, I Martin, D. V. Pelekhov, K. C. Cha, E. A. Akhadov, P. C. Hammel and R. Movshovich Journal of Applied Physics 106 046103 (2009)
- 111. "Detection of localized ferromagnetic resonance in a continuous thin film via magnetic resonance force microscopy," E. Nazaretski, D. V. Pelekhov, I. Martin, M. Zalalutdinov, D. Ponarin, A. Smirnov, P. C. Hammel and R. Movshovich *Physical Review B* **79** 132401 (2009)
- 112. "Magnetization reversal in an individual 25 nm iron-filled carbon nanotube," Palash Banerjee, F. Wolny, D. V. Pelekhov, M. R. Herman, K. C. Fong, U. Weissker, T. Mühl, Yu. Obukhov, A. Leonhardt, B. Büchner, and P. Chris Hammel *Applied Physics Letters* **96** 252505 (2010) DOI: 10.1063/1.3440951 http://link.aip.org/link/?APL/96/252505,
- 113. "Nanoscale scanning probe ferromagnetic resonance imaging using localized modes," Inhee Lee, Yuri Obukhov, Gang Xiang, Adam Hauser, Fengyuan Yang, Palash Banerjee, Denis V. Pelekhov & P. Chris Hammel, *Nature* 466 845-848 (12 August 2010) doi:10.1038/nature09279 http://www.nature.com/nature/journal/v466/n7308/full/nature09279.html
- 114. "A strong ferroelectric ferromagnet created by means of spinlattice coupling," June Hyuk Lee, Lei Fang, Eftihia Vlahos, Xianglin Ke, Young Woo Jung, Lena Fitting Kourkoutis, Jong-Woo Kim, Philip J. Ryan, Tassilo Heeg, Martin Roeckerath, Veronica Goian, Margitta Bernhagen, Reinhard Uecker, P. Chris Hammel, Karin M. Rabe, Stanislav Kamba, Jürgen Schubert, John W. Freeland, David A. Muller, Craig J. Fennie, Peter Schiffer, Venkatraman Gopalan, Ezekiel Johnston-Halperin & Darrell G. Schlom, *Nature* 466 954-958 (19 August 2010) doi:10.1038/nature09331 http://www.nature.com/nature/journal/v466/n7309/full/nature09331.html
- 115. "Quantitative magnetic force microscopy on permalloy dots using an iron filled carbon nanotube probe," F. Wolny, Y. Obukhov, T. Mühl, U. Weissker, S. Philippi, A. Leonhardt, P. Banerjee, A. Reed, G. Xiang, R. Adur, I. Lee, A.J. Hauser, F.Y. Yang, D.V. Pelekhov, B. Büchner and P.C. Hammel, Ultramicroscopy **111** 1360–1365 (2011) http://dx.doi.org/10.1016/j.ultramic.2011.05.002
- 116. "Magnetic force microscopy in the presence of a strong probe field," Inhee Lee, Jongjoo Kim, Yuri Obukhov, Palash Banerjee, Gang Xiang, Denis V. Pelekhov, Adam Hauser, Fengyuan Yang and P. Chris Hammel, Applied Physics Letters 99 162514 (2011), selected for publication in the Virtual Journal of Nanoscale Science & Technology (http://www.vjnano.org/)
- 117. "Spin Lifetime in Small Electron Spin Ensembles Measured by Magnetic Resonance Force Microscopy," K.C. Fong, M.R. Herman, P. Banerjee, D.V. Pelekhov and P.C. Hammel, *Physical Review B, Rapid Communications*, 84 220405(R) (2011) selected as an Editor's Suggestion and highlighted in *Physics*: http://physics.aps.org/synopsis-for/10.1103/PhysRevB.84.220405
- 118. "Nanoscale confined mode ferromagnetic resonance imaging of an individual Ni₈₁Fe₁₉ disk using magnetic resonance force microscopy," Inhee Lee, Yuri Obukhov, A.J. Hauser, F.Y. Yang, D.V. Pelekhov and P.C. Hammel *Journal Of Applied Physics* **109** 07D313 (2011) DOI: 10.1063/1.3536821

- 119. "Imaging spin properties using spatially varying magnetic fields,"
 V. P. Bhallamudi, A. J. Berger, D. E. Labanowski, D. Stroud and P. C. Hammel, *Journal Of Applied Physics* 111 013902 (2012)
- 120. "Local magnetic characterization of (Ga,Mn)As continuous thin film using scanning probe force microscopy," Inhee Lee, Yuri Obukhov, Jongjoo Kim, Xia Li, Nitin Samarth, Denis V. Pelekhov, and P. Chris Hammel, *Phys. Rev. B* **85** 184402 (2012) DOI: 10.1103/Phys-RevB.85.184402 URL: http://link.aps.org/doi/10.1103/PhysRevB.85.184402
- 121. "The role of diffusion in ferritin-induced relaxation enhancement of protons," Michael A. Boss and P. Chris Hammel, *Journal Of Magnetic Resonance* **217** 36–40, DOI: 10.1016/j.jmr.2012.02.005 (2012)
- 122. "Dynamics of Histone Tails within Chromatin," Bernier, MW; Bravo, J; Branson, C; Jaroniec, CP; Hammel, PC; Poirier, MG, Biophysical Journal, **104** 343A, Supplement: 1 (2013)
- 123. "Correlation of electrical spin injection and non-linear charge-transport in Fe/MgO/Si," Yong Pu, J. Beardsley, P. M. Odenthal, A. G. Swartz, R. K. Kawakami, P. C. Hammel, E. Johnston-Halperin, Jairo Sinova and J. P. Pelz, *Applied Physics Letters* **103** 012402 (2013)
- 124. "Anisotropy and Field-Sensing Bandwidth in Self-Biased Bismuth-Substituted Rare-Earth Iron Garnet Films: Measurement by Ferromagnetic Resonance Spectroscopy," Adur, R.; Lauback, S.; Banerjee, P.; Lee, I; Fratello, VJ; Hammel, PC, *IEEE Transactions On Magnetics* 49 2899–2902 (June 2013)
- "Structural transitions in a doped lanthanum cuprate," S.-H. Baek, P. C. Hammel, M. Hücker, B. Büchner, U. Ammerahl, A. Revcolevschi, and B. J. Suh, *Phys. Rev. B* 87, 174505 (2013)
- 126. "Experimental Demonstration of Scanned Spin-Precession Microscopy," V. P. Bhallamudi, C. S. Wolfe, V. P. Amin, D. E. Labanowski, A. J. Berger, D. Stroud, J. Sinova, and P. C. Hammel, *Physical Review Letters* **111**, 117201 (2013) (Editor's Suggestion)
- 127. "Control of Magnetocrystalline Anisotropy by Epitaxial Strain in Double Perovskite Sr₂FeMoO₆ Films," Chunhui Du, Rohan Adur, Hailong Wang, Adam J. Hauser, Fengyuan Yang, and P. Chris Hammel, *Physical Review Letters* **110** 147204 (2013) DOI: 10.1103/PhysRevLett.110.147204
- 128. "Large Spin Pumping from Epitaxial Y₃Fe₅O₁₂ Thin Films to Pt and W Layers," H. L. Wang, C. H. Du, Y. Pu, R. Adur, P. C. Hammel, and F. Y. Yang, *Physical Review B* Rapid Communications 88 100406(R) (2013) DOI: 10.1103/PhysRevB.88.100406 URL: http://link.aps.org/doi/10.1103/PhysRevB.88.100406
- 129. "Histone H3 and H4 N-Terminal Tails in Nucleosome Arrays at Cellular Concentrations Probed by Magic Angle Spinning NMR Spectroscopy," Min Gao, Philippe S. Nadaud, Morgan W. Bernier, Justin A. North, P. Chris Hammel, Michael G. Poirier, and Christopher P. Jaroniec, J. Am. Chem. Soc. 135 1527815281, DOI: 10.1021/ja407526s (2013)
- 130. "Probing the Spin Pumping Mechanism: Exchange Coupling with Exponential Decay in Y₃Fe₅O₁₂/Barrier/Pt Heterostructures," C. H. Du, H. L. Wang, Y. Pu, T. L. Meyer, P. M. Woodward, F.Y. Yang, and P. C. Hammel, *Physical Review Letters* **111** 247202 (2013) DOI: 10.1103/PhysRevLett.111.247202
- 131. "The effect of spin transport on spin lifetime in nanoscale systems," Jeremy Cardellino, Nicolas Scozzaro, Michael Herman, Andrew J. Berger, Chi Zhang, Kin Chung Fong, Ciriyam Jayaprakash, Denis V. Pelekhov and P. Chris Hammel, *Nature Nanotechnology* **9** 343 (2014) DOI: 10.1038/NNANO.2014.39
- 132. "Strain-tunable magnetocrystalline anisotropy in epitaxial Y₃Fe₅O₁₂ thin films," Hailong Wang, Chunhui Du, P. Chris Hammel, and Fengyuan Yang, *Phys. Rev. B* 89 134404 (2014)

- 133. "Scaling of spin Hall angle in 3d, 4d and 5d metals from Y₃Fe₅O₁₂/metal spin pumping," H. L. Wang, C. H. Du, Y. Pu, R. Adur, P. C. Hammel and F. Y. Yang *Physical Review Letters* 112 197201 (2014)
- 134. "Enhancement of Pure Spin Currents in Spin Pumping Y₃Fe₅O₁₂/Cu/metal Trilayers through Spin Conductance Matching," Chunhui Du, Hailong Wang, Fengyuan Yang, and P. Chris Hammel, *Physical Review Applied* 1 044004 (2014)
- 135. "Off-resonant manipulation of spins in diamond via precessing magnetization of a proximal ferromagnet," C. S. Wolfe, V. P. Bhallamudi, H. L. Wang, C. H. Du, S. Manuilov, R. M. Teeling-Smith, A. J. Berger, R. Adur, F. Y. Yang and P. C. Hammel, *Physical Review B Rapid Communication* **89** 180406 (2014) (Editor's Suggestion and Physics Highlight) DOI: 10.1103/PhysRevB.89.180406
- 136. "Spin current and inverse spin Hall effect in ferromagnetic metals probed by Y₃Fe₅O₁₂based spin pumping," Hailong Wang, Chunhui Du, P. Chris Hammel and Fengyuan Yang, *Appl. Phys. Lett.* **104** 202405 (2014) http://dx.doi.org/10.1063/1.4878540
- 137. "Ultra-narrow ferromagnetic resonance in organic-based thin films grown via low temperature chemical vapor deposition," H. Yu, M. Harberts, R. Adur, Y. Lu, P.C. Hammel, E. Johnston-Halperin and A.J. Epstein, *Applied Physics Letters* **105** 012407 (2014) DOI: 10.1063/1.4887924
- 138. "Magnetization dynamics of cobalt grown on graphene, A.J. Berger, W. Amamou, S.P. White, R. Adur, Y. Pu, R.K. Kawakami and P.C. Hammel, *Journal Of Applied Physics* 115 17C510 (2014)
- 139. "Dual-frequency ferromagnetic resonance to measure spin current coupling in multilayers," Rohan Adur, Chunhui Du, Hailong Wang, Sergei A. Manuilov, Fengyuan Yang and P. Chris Hammel, Proc. SPIE **9167** Spintronics VII, 91672J (2014)
- 140. "Antiferromagnonic Spin Transport from Y₃Fe₅O₁₂ into NiO," Hailong Wang, Chunhui Du,
 P. Chris Hammel and Fengyuan Yang, *Physical Review Letters* 113 097202 (2014)
- 141. "Damping of Confined Modes in a Ferromagnetic Thin Insulating Film: Angular Momentum Transfer Across a Nanoscale Field-defined Interface," Rohan Adur, Chunhui Du, Hailong Wang, Sergei A. Manuilov, Vidya P. Bhallamudi, Chi Zhang, Denis V. Pelekhov, Fengyuan Yang and P. Chris Hammel, in press at *Physical Review Letters* (2014)
- 142. "Systematic variation of spin-orbit coupling with d-orbital filling: Large inverse spin Hall effect in 3d transition metals" Chunhui Du, Hailong Wang, Fengyuan Yang, and P. Chris Hammel, *Physical Review B*, **90**, 140407R (2014)