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We consider the process of a single-spin measurement using magnetic resonance force microscopy
(MRFM) with a cyclic adiabatic inversion (CAI). This technique is also important for different
applications, including a measurement of a qubit state in quantum computation. The measurement
takes place through the interaction of a single spin with a cantilever modeled by a quantum oscillator
in a coherent state in a quasi-classical range of parameters. The entire system is treated rigorously
within the framework of the Schrödinger equation. For a many-spin system our equations accurately
describe conventional MRFM experiments involving CAI of the spin system.

Our computer simulations of the quantum spin-cantilever dynamics show that the probability
distribution for the cantilever position develops two asymmetric peaks with the total relative prob-
abilities mainly dependent on the initial angle between the directions of the average spin and the
effective magnetic field, in the rotating frame. We show that each of the peaks is correlated with the
direction of the average spin (being along or opposite to the direction of the effective magnetic field).
This generates two possible outcomes of a single-spin measurement, similar to the Stern-Gerlach
effect. We demonstrate that the generation of the second peak can be significantly suppressed by
turning on adiabatically the amplitude of the rf magnetic field. We also show that MRFM CAI can
be used both for detecting a signal from a single spin, and for measuring the single-spin state by
measuring the phase of the cantilever driving oscillations.

PACS numbers: PACS numbers: 03.67.Lx, 03.67.-a, 76.60.-k

INTRODUCTION

A problem of detection a signal from a single electron
and nuclear spin is extremely important for successful de-
velopment of future quantum technologies. One of these
technologies is quantum computation. (See, for example,
books [1–6].) In solid-state quantum computers, a single
quantum bit (qubit) can be realized using different quan-
tum two-level systems [7]. In particular, a qubit can be
represented by a nuclear [8, 9] or an electron [10–13] spin.
To extract the information from a quantum computer
one must read out a state of a single qubit. This means
that one must at least measure a signal from a magnetic
moment produced by a single spin. Recently, there ex-
ist different proposals to realize a single-spin quantum
measurement. (See, for example [8, 9, 12, 14].) One of
them is based on a magnetic resonance force microscopy
(MRFM).

A MRFM was first proposed by Sidles in 1991 as a
sensitive method to detect a signal from small magnetic
samples [15]. Since this time, a MRFM has been suc-
cessfully used to increase the sensitivity and spatial reso-
lution for an electron spin resonance [16], ferromagnetic

resonance [17], and nuclear magnetic [18]. For a recent
review on a MRFM see [19].

In conventional MRFM (see Fig. 1), a magnetic parti-
cle produces a non-uniform magnetic field which attracts
or repels the magnetic moment of a sample placed, in our
case, on a cantilever tip, depending on the direction of
a magnetic moment. The magnetic resonance technique
in MRFM CAI provides two types of magnetic moment
oscillation in the reference frame which rotates with the
rf-field : the fast oscillation around the effective mag-
netic field, and the slow oscillation with the cantilever
frequency. These oscillations cause resonant vibrations
of the cantilever that can be detected, for example, using
optical methods.

We also would like to mention here a connection be-
tween the MRFM CAI and the problem of a “continu-
ous” measurement of a quantum system which means a
continuous monitoring of the dynamics of a macroscopic
system caused by the dynamics of a quantum system.
(See, for example, [20, 21].)

As a necessary step to approach the problems of a
single-spin measurement using a MRFM CAI we perform
a detailed quantum mechanical analysis of the coupling
of a single spin to a cantilever. We treat the measurement
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FIG. 1: A schematic setup of the spin-cantilever system. �B0 is
the uniform permanent magnetic field oriented in the positive
z-direction; �B1 is the rotating magnetic field; �S is a single spin
(S = 1/2); �M is the magnetic moment of the ferromagnetic
particle.

device (a quasi-classical cantilever) entirely quantum me-
chanically together with a single spin as an isolated quan-
tum system described by the Schrödinger equation.

This pure quantum–mechanical approach allows us to
answer to the following crucial question: What spin
projection is measured by a cantilever in MRFM CAI?
Namely, in a standard Stern-Gerlach experiment one
measures the spin projection along the direction of the
magnetic field (the z-direction). At the same time, in the
classical version of MRFM CAI the magnetic moment of
the sample is oriented along the direction of the effective
magnetic field that oscillates in the rotating reference
frame (x− z plane). So, the central question is whether
in the quantum case the natural axis of the spin quanti-
zation is the direction of the cantilever oscillations (the
z-direction) or the direction of the oscillating magnetic
field. Our numerical simulations demonstrate that un-
der the parameters used in MRFM CAI the axis of spin
quantization is the direction of the oscillating effective
magnetic field. This conclusion is important because it
means that the quantum version of MRFM CAI (in which
a spin is supposed to rotate fast around the effective mag-
netic field and to follow adiabatically its oscillations) can
be realized.

In Section 2, we formulate the classical problem of the
driven oscillations of the cantilever. We then present its
quantum-mechanical equivalent for a spin-cantilever sys-
tem in the Schrödinger representation. The cantilever
is prepared initially in a quantum coherent state using
parameters that place it in a quasi-classical regime. We
show that these parameters in the classical limit of a
many-spin system correspond to real experimental con-
ditions of CAI. In Section 3, we consider the quantum
dynamics of a single spin-cantilever system when the spin

is rotated by CAI. Our computer simulations explicitly
demonstrate the formation of two distinctive peaks in the
probability distribution of the cantilever position. These
two peaks are quasi-periodically overlapping with a pe-
riod that matches that of the CAI of the spin. In Section
4, we show that the two peaks in the cantilever distri-
bution each involves a superposition of both the station-
ary spin states. The average spin in one of the peaks is
oriented approximately in the direction of the effective
magnetic field (in the rotating reference frame), and in
the other peak the average spin is oriented approximately
in the direction opposite to the direction of the effective
magnetic field. This results in unwanted effect – two pos-
sible outcomes (quantum jump) of a single-spin measure-
ment (similar to the Stern-Gerlach effect). We show that
turning on adiabatically the amplitude of the rf magnetic
field can significantly suppress the magnitude of one of
the peaks (∼ 10−6 for chosen parameters). As it is shown
in Section 5, this will allow one to use MRFM CAI not
only for detecting a signal from a single spin, but also for
measuring a single-spin state by measuring the phase of
the cantilever driving oscillations. The summary of our
results are presented in Section 6.

FORMULATION OF THE MODEL

Consider the cantilever–spin system shown in Fig. 1,
namely, a single spin (S = 1/2) is placed on the cantilever
tip. The tip can oscillate only in the z-direction. The
ferromagnetic particle, whose magnetic moment points
in the positive z-direction, produces a non-uniform mag-
netic field at the spin. The uniform magnetic field,
�B0, oriented in the positive z-direction, determines the
ground state of the spin. The rotating magnetic field, �B1,
induces transitions between the ground and the excited
states of the spin. The origin is chosen to be the equilib-
rium position of the cantilever tip with no ferromagnetic
particle. The rotating magnetic field can be represented
as,

Bx = B1 cos(ωt+ ϕ(t)), By = −B1 sin(ωt+ ϕ(t)), (1)

where ϕ(t) describes a smooth change in phase required
for a cyclic adiabatic inversion of the spin (|dϕ/dt| � ω).

The classical motion for the cantilever displacement,
Z(x = lc, t) (where x is the coordinate along the can-
tilever and lc the length of the cantilever), under the ac-
tion of the “effective external harmonic force” (EEHF),
Fω exp(iωt), takes the form[22]

Z =
4
mc

∞∑
n=1

Fω

ω2
n − ω2 e

iωt, (2)

where mc is the mass of the cantilever. The summation
in Eq. (2) is taken over all eigen–frequencies of the can-
tilever. Neglecting all terms in Eq. (2) except for the
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first one with n = 1, and taking into consideration the
finite value of the quality factor, Q, of the cantilever, we
have from Eq. (2),

Z ≈ 4Fω/mc

ω2
c − ω2 + 2iω2/Q

eiωt, (3)

where ωc is the lowest eigen frequency of the cantilever.
Eq. (3) describes the resonant enhancement of the

classical oscillations by a quality factor, Q. For the cor-
responding quantum mechanical treatment of the same
cantilever-spin system we introduce the Hamiltonian in
the reference frame rotating with �B1,

H =
P 2

z

2m∗
c

+
m∗

cω
2
cZ

2

2
− �

(
ωL − ω − dϕ

dt

)
Sz

− �ω1Sx − gµ
∂Bz

∂Z
ZSz. (4)

where we defined m∗
c = mc/4 as the effective cantilever

mass. In Eq. (4), Z is the coordinate of the oscillator
which describes the dynamics of the cantilever tip; Pz is
its momentum,

ωc = (kc/m
∗
c)

1/2, ωL = γBz, ω1 = γB1, (5)

where Bz includes the uniform magnetic field, B0, and
the magnetic field produced by the ferromagnetic par-
ticle at the spin location (at z = 0); γ = gµ/� is the
gyromagnetic ratio of the spin; Sz and Sx are the z- and
the x-components of the spin; ωL is its Larmor frequency;
ω1 is the Rabi frequency (the frequency of the spin pre-
cession around the field B1 at the resonance: ω = ωL,
ϕ̇ = 0); g and µ are the g-factor and the nuclear mag-
neton (or the Bohr magneton in the case of an electron
spin).

It is useful to rewrite the Hamiltonian (4) in the di-
mensionless form by introducing the following “quanta”
of the oscillator (cantilever): energy (E0), force (F0), am-
plitude (Z0), and momentum (P0),

E0 = �ωc, F0 =
√
kcE0, Z0 =

√
E0/kc, P0 = �/Z0.

(6)
Using these dimensionless quantities and setting ω = ωL,
Hamiltonian (4) reads:

H′ = H/�ωc = (p2
z + z2)/2 + ϕ̇Sz − εSx − 2ηzSz, (7)

where,

pz = Pz/P0, z = Z/Z0, ϕ̇ = dϕ/dτ, τ = ωct,

ε = ω1/ωc, η = gµ(∂Bz/∂Z)/2Fc. (8)

ε and η, in Eq. (8) are two dimensionless parameters
which characterize the quantum dynamics described by
the Hamiltonian (7). In details, ε is the dimensionless
Rabi frequency, while η is the dimensionless magnetic
force produced by a single spin on the cantilever.

To estimate the “quanta” in (6) and the dimensionless
parameters in (8), we use parameters from the MRFM
measurement [18] of protons in ammonium nitrate,

ωc/2π = 1.4 × 103Hz, kc = 10−3N/m,

B1 = 1.2 × 10−3 T, ∂Bz/∂Z = 600 T/m,

γ/2π = 4.3 × 107 Hz/T. (9)

Using these values, we obtain,

E0 = 9.2 × 10−31 J, F0 = 3 × 10−17 N,

Z0 = 3 × 10−14 m, P0 = 3.5 × 10−21 kgm/s,

ε = 37, η = 2.8 × 10−7. (10)

The dimensionless Schrödinger equation can be written
in the form,

iΨ̇ = H′Ψ, (11)

where,

Ψ(z, τ) =
(
ψ1(z, τ)
ψ2(z, τ)

)
, (12)

is a dimensionless spinor, and Ψ̇ = ∂Ψ/∂τ . Next, we ex-
pand the functions, ψ1(z, τ) and ψ2(z, τ), in terms of the
eigenfunctions, |n〉, of the unperturbed oscillator Hamil-
tonian, (p2

z + z2)/2,

ψ1(z, τ) =
∞∑

n=0

An(τ)|n〉,

ψ2(z, τ) =
∞∑

n=0

Bn(τ)|n〉,

|n〉 = π1/42n/2(n!)1/2e−z2/2Hn(z), (13)

where Hn(z) are the Hermitian polynomials. Substitut-
ing (13) in (11) and taking into account (7), we derive the
coupled system of equations for the complex amplitudes,
An(τ), and Bn(τ),

iȦn = (n+ 1/2 + ϕ̇/2)An

− (η/
√

2)(
√
nAn−1 +

√
n+ 1An+1) − (ε/2)Bn,

iḂn = (n+ 1/2 + ϕ̇/2)Bn

+ (η/
√

2)(
√
nBn−1 +

√
n+ 1Bn+1) − (ε/2)An.(14)

To derive Eqs (14), we used the well-known expressions
for creation and annihilation operators,

a|n〉 =
√
n|n− 1〉

a†|n〉 =
√
n+ 1|n+ 1〉

[(p2
z + z2)/2]|n〉 = (n+ 1/2)|n〉

z = (a† + a)/
√

2

pz = i(a† − a)/
√

2
[a, a†] = 1. (15)
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To test our model, we considered the classical limit of
the macroscopic number of spins and the classical can-
tilever. For this purpose we substitute the operators Sx

and Sz by the sums of operators over all spins in the
sample. Neglecting the quantum correlation effects we
derive the classical equations of motion for the average
spin of the sample and for the cantilever:

ż = pz,

ṗz = −z + 2η∆NSz,

�̇S = [�S ×�beff ]. (16)

Here, �beff is the effective dimensionless magnetic field
with components,

beff
x = ε, beff

z = −ϕ̇+ 2ηz, (17)

∆N is the difference in the population of the ground
state and the excited state of the spin system. Then to
estimate the amplitude of the stationary vibrations of
the cantilever within the Hamiltonian approach, we put
τ = Qc, where Qc is the quality factor of the cantilever.
(The value τ = Qc corresponds to the time t = tc, where
tc = Qc/ωc is the time constant of the cantilever.)

Taking parameters from the experiment[18]

∆N = 2.9 × 109, Qc ≈ 103, (18)

we obtain for the stationary amplitude of the cantilever

z = ∆NηQc ≈ 8.1 × 105. (19)

The corresponding dimensional value of the amplitude
is, Z ≈ 24 nm. The experimental value in [18] is 16 nm,
which is close to the estimated value.

In our simulations of the classical dynamics we used
the following time dependence for ϕ̇,

ϕ̇ =
{ −600 + 30τ, if τ ≤ 20,
A sin(τ − 20), if τ > 20. (20)

where A = 100, which produces a CAI of the spin
system[18]. The standard condition for a CAI, |ϕ̈| � ε2,
is clearly satisfied in Eqs (20).

QUANTUM DYNAMICS FOR A SINGLE
SPIN-CANTILEVER SYSTEM

The magnetic force between the cantilever and a single
spin is extremely small. To simulate the dynamics of the
cantilever driven by a single spin, on reasonable times, we
take η = 0.3. Such a value can be already achieved in the
present day experiments by measuring a single electron
spin. (See, for example, [19].)

To describe the cantilever as a sub-system close to the
classical limit, we choose the initial wave function of the
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FIG. 2: Probability distribution of the cantilever coordinate,
z, for ε = 400 and η = 0.3. The initial conditions: z(0) ≡
〈z〉 = −20, pz(0) ≡ 〈pz〉 = 0 (α = −√

2 × 10). Times are: a)
τ = 0, b) τ = 20, c) τ = 64.8 , d) τ = 104, e) τ = 160 f)
τ = 221.6

cantilever in the coherent state, |α〉, in the quasi-classical
region of parameters (|α|2 � 1). Namely, the initial wave
function of the cantilever was taken in the form (12),
where:

ψ1(z, 0) =
∞∑

n=0

An(0)|n〉, ψ2(z, 0) = 0,

An(0) = (αn/
√
n!) exp(−|α|2/2). (21)

The initial averages of z and pz can be represented as,

〈z〉 =
1√
2
(α∗ + α), 〈pz〉 =

i√
2
(α∗ − α). (22)

In all numerical simulations we choose α = −√
2 × 10,

which corresponds to the initial average number of exci-
tations in the cantilever: n = |α|2 = 200.

Note, that the value |α| cannot be significantly reduced
if we are going to simulate a quasi-classical cantilever.
At the same time, increasing |α| increases the number
of states, |n〉, involved in the dynamics which makes the
simulations of quantum dynamics more complicated.
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We numerically integrated system (14) using standard
a Runge-Kutta fourth order method. We checked our
results increasing in two times the dimension of the os-
cillator basis (up to 3000 levels) and decreasing the time
integration step.

Fig. (2) shows the typical probability distribution

P (z, τ) = |ψ1(z, τ)|2 + |ψ2(z, τ)|2, (23)

obtained from numerical simulations of Eqs. (14). for six
instants of time, τ , and for the parameters: η = 0.3 and
ε = 400. (The dimensionless period, ∆τ = 2π, corre-
sponds to the dimensional period, ∆t = 2π/ωc.) This
figure reveals that the cantilever can be found in two dif-
ferent positions. Indeed, near τ = 40, the probability
distribution (23) splits into two asymmetric peaks. After
this the separation between these two peaks varies pe-
riodically in time. The ratio of the peak amplitudes is
about 1000 for chosen parameters. (Hence, we show the
amplitudes in the logarithmic scale). The cyclic adiabatic
inversion parameters were chosen,

ϕ̇ =
{ −6000 + 300τ, if τ ≤ 20,
A sin(τ − 20), if τ > 20. (24)

where A = 1000. The chosen parameters in Eq. (24)
allow one to “catch” the spin, initially oriented in the
positive (or negative) z-direction, by the effective mag-
netic field, and to put it approximately in the positive (or
negative) x-direction at τ = 20. For times τ > 20, the
spin oscillates in the xz-plane, together with the effective
magnetic field.

It is clear that the small peak does not significantly
influence the average coordinate of the cantilever. Fig. 3
shows the average coordinate of the cantilever, 〈z(τ)〉,
and the corresponding standard deviation, ∆(τ) =
[〈z2〉 − 〈z〉2]1/2. One can see a fast increase of the av-
erage amplitude of the cantilever vibrations, while the
standard deviation still remains small. This, in fact, is
related to the initial conditions of the spin, which was
taken in the direction of the z-axis. For instance, if the
spin initially points in the x-axis (ψ1(z, 0) = ψ2(z, 0)),
our calculations show two large peaks with similar am-
plitudes.

The two peaks in the cantilever probability distribu-
tion, shown in Fig. 2 indicate two possible trajectories
of the cantilever (similar to the Stern-Gerlach effect). As
a result of the consequent measurement of the cantilever
position the system selects one of the two trajectories.

CANTILEVER-SPIN ENTANGLEMENT

As shown in Fig. 2, two asymmetric peaks in the can-
tilever distribution are well-separated for shown instants
of time. When the probability distribution splits into
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FIG. 3: Cantilever dynamics. (a) Average coordinate of the
cantilever as a function of τ and (b) its standard deviation
∆(τ) = [〈z2(τ)〉 − 〈z(τ)〉2]1/2. Data and parameters are the
same as Fig.(2).

these peaks, the distance, d, between them initially in-
creases. Then, d decreases so that the two peaks even-
tually overlap. After this, the probability distribution
splits again so that the position of the minor peak is on
the opposite side of the major peak. Again, the distance,
d, first increases, then decreases until the two peaks over-
lap. This cycle repeats for as long as the simulations are
run.

One might expect that the two peaks are associated
with the functions Pn(z, τ) = |ψn(z, τ)|2, n = 1, 2. In
fact the situation is more subtle: each function, Pn(z, τ)
splits into two peaks. Fig. 4, shows these two functions
for nine instants in time: τk = 92.08+0.8k, k = 0, 1, ..., 8
during one period of the cantilever vibration. One can
see the splitting of both P1(z, τ) and P2(z, τ); each peak
of the function P1(z, τ) has the same position as the two
peaks of P2(z, τ), but the amplitudes of these peaks dif-
fer. For instance for k = 1 (τ = 92.88) the left-hand peak
is dominantly composed of P1(z, τ), while the right hand
peak is mainly composed of P2(z, τ).

Fig. 5 shows the spatially integrated probability
distributions: P11(τ) =

∫
P1(z, τ)dz and P22(τ) =∫

P2(z, τ)dz, as “truly continuous” functions of time, τ .
(Vertical arrows show the time instants, τk.)

The crucial problem is the following: Do the two peaks
of the cantilever distribution correspond to the definite
spin states? To answer this question we studied the struc-
ture of the wave function of the cantilever-spin system.
As was already mentioned, both functions, ψ1(z, τ) and
ψ2(z, τ), contribute to each peak (see Fig. 4). When the
two peaks are clearly separated we can represent each of
these functions as a sum of two terms, corresponding to
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FIG. 4: Probability distributions, P1(z, τ) = |ψ1(z, τ)|2 (slid
curves), and P2(z, τ) = |ψ2(z, τ)|2 (dashed curves) for nine
instants of time: τk = 92.08 + 0.8k, k = 0, 1, ..., 8.
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FIG. 5: Integrated probability distributions of the spin z-
components (diagonal components of the spin density ma-
trix): P11(τ), for Sz = 1/2 (•); and P22(τ), for Sz = −1/2
(◦), as functions of time. Vertical arrows show the time in-
stants, τk = 92.08 + 0.8k, k = 0, 1, ..., 8 depicted in Fig. 4.

the “big” and “small” peaks,

ψ1,2(z, τ) = ψb
1,2(z, τ) + ψs

1,2(z, τ). (25)

We have found that with accuracy up to 1% the ratio,
ψs

2(z, τ)/ψ
s
1(z, τ) = −ψb

1(z, τ)/ψ
b
2(z, τ) = κ(τ), where

κ(τ) is a real function independent of z. Results are
shown in Fig.(6), for the same parameter as Fig.(2), and
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FIG. 6: Demonstration of the orthogonality of spin wave
functions belonging to “big” and “small” peaks. a) circles:
Re(−κψs

1), solid line: Re(ψs
2); b) circles: Im(−κψs

1), solid
line: Im(ψs

2); c) circles: Re(κψb
2), solid line: Re(ψb

1); d) cir-
cles: Im(κψb

2), solid: Im(ψb
1), where κ(τ = 76) = −2.9.

for τ = 76 with κ(τ) = −2.9 obtained by a best fit pro-
cedure.

As a result, the total wave function can be represented
in the form,

ψ(z, sz, τ) = ψb(z, τ)χb(sz, τ) + ψs(z, τ)χs(sz, τ), (26)

where χb(sz, τ) and χs(sz, τ) are spin wave functions,
which are orthogonal to each other. Eq. (26) shows that
each peak in the probability distribution of the cantilever
coordinate corresponds to a definite spin wave function.
We found that the average spin, 〈χb|�S|χb〉, correspond-
ing to the big peak points in the direction of the vec-
tor (ε, 0,−dϕ/dτ), whereas the average spin, 〈χs|�S|χs〉,
corresponding to the small peak, points in the opposite
direction. In Fig. 7, we demonstrate the directions of ef-
fective magnetic field (thick arrow); the direction of the
average spin calculated using the χb(sz, τ) wave function
(thin arrow); and the direction of the average spin cal-
culated using the χs(sz, τ) wave function (thin dashed
arrow). This can only be done when the probability dis-
tributions corresponding to the small and big peaks, Ψb

and Ψs, are well separated in space. This is not the case
in Figs 4c and 4g. In these cases we represent the total av-
erage spin only (as a thin line) (see Figs 7c and 7g). One
should also take into account that the “lengths” of the
effective magnetic field and the average spin of the small
head has been renormalized respectively to the length
1 and 1/2, in order to be put them on the same scale
(they are respectively few order of magnitude larger and
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FIG. 7: The directions of the effective magnetic field (thick
arrow) renormalized to the unit length; the direction of the
average spin calculated using the χb(sz, τ) wave function (thin
arrow); and the direction of the average spin calculated using
the χs(sz, τ) wave function (thin dashed arrow) renormalized
to the length 1/2, in order to be plotted in the same picture.
Times and parameters as in Fig. 4. In Fig. c) and g) one sin-
gle thin line has been drawn, for the total average spin. This is
due to the spatial overlapping of the probability distribution
corresponding to the small and big peak (see text).

smaller than the total average spin). The results pre-
sented in Fig. 7 allow one a better understanding of the
structure of the total wave function described by Eqs (25)
and (26).

Note that up to a small term, 2ηz, the vector,

(ε, 0,−dϕ/dτ),

is the effective magnetic field acting on the spin. The
ratio of the integrated probabilities (

∫
P (z, τ)dz) for the

small and big peaks (∼ 10−3 in Fig. (2)) can be eas-
ily estimated as tan2(Θ/2), where Θ is the initial an-
gle between the effective field, (ε, 0,−dϕ/dτ), and the
spin direction. Therefore, by measuring the cantilever
vibrations, one finds the spin in a definite state along or
opposite to the effective magnetic field. Our numerical
simulations for such a new initial condition, i.e. when
the average spin points along or opposite to the effective
field, are shown in Fig.(8). The probability distribution
P (z, τ) shows again two peaks but the ratio of the inte-
grated probabilities of these peaks is much less than in
Fig. 2 (∼ 10−6). Note that we used in Fig.(8) a larger
scale on y–axis than that in Fig.(2), in order to show
that the small peak is clearly beyond the unavoidable
numerical errors.

Thus for chosen parameters, the probability of the sec-
ond peak in the cantilever position generated by a single
spin measurement is small. This implies that the ap-
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FIG. 8: Probability distribution of the cantilever coordinate,
z, for ε = 400 and η = 0.3. The initial conditions: z(0) ≡
〈z〉 = −20, pz(0) ≡ 〈pz〉 = 0 (α = −√

2×10), and the average
spin in the direction of the effective magnetic field.

pearance of this peak cannot prevent the amplification
of the cantilever vibration amplitude, and therefore the
measurement of the state of a single spin.

So far, the described picture reminds the classical
Stern-Gerlach effect in which the cantilever measures the
spin component not in the z−direction but along the ef-
fective magnetic field. An appearance of the second peak,
even if the average spin points initially in the direction of
the effective magnetic field, provides a difference with the
Stern-Gerlach effect. The origin of this peak is a small
deviations from the adiabatic motion of the spin even at
large amplitude of the effective field, and the back reac-
tion of the cantilever vibrations on the spin.

MEASURING A SINGLE-SPIN STATE

The next important question is the following: Is it pos-
sible to use CAI MRFM not only to detect a spin signal
but also to measure the state of a single spin? We studied
numerically the phase of the cantilever vibrations when
the initial spin points along or opposite the direction of
the effective magnetic field. Our computer simulations
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FIG. 9: Measurement of the single-spin state using the phase
of the cantilever vibrations. For the dynamics of 〈z(τ)〉 and
〈Sz(τ)〉 the solid line corresponds to “big” (classical) peak of
the cantilever distribution, and the dashed line corresponds
to “small” (quantum) peak, renormalized to the similar am-
plitudes. At the bottom, the dynamics of the z-component of
the effective field is shown.

show that the phases of the cantilever vibrations for these
two initial conditions are significantly different. When
the amplitude of the cantilever vibrations increases, the
phase difference for two initial conditions approaches π.
Thus, the classical phase of the cantilever vibrations in-
dicates the state of the spin relatively to the effective
magnetic field.

In Fig. 9 we demonstrate a process of measurement of
a single-spin state using the phase of the cantilever vibra-
tions. For the dynamics of 〈z(τ)〉 and 〈Sz(τ)〉 the solid
curve corresponds to “big” (classical) peak of the can-
tilever distribution, and the dashed curve corresponds to
“small” (quantum) peak. At the bottom, the dynamics
of the z-component of the effective field is shown. One
can see that the solid curve of 〈Sz(τ)〉 is in phase with
the effective field component, beff

z (τ). The phase differ-
ence of the cantilever vibrations corresponding two peaks
approaches π for large enough times.

In practical applications it would be very desirable
to use CAI MRFM for measurement of the initial z-
component of the spin. For this purpose one should pro-

vide the initial direction of the effective magnetic field
to be the z-direction. Then, the initial z-component of
the spin will coincide with its component relatively to
the effective magnetic field. In our computer simulations
presented in Figs. 4-7 we have assumed an instantaneous
increase of the amplitude of the rf field, at τ = 0. This
causes an initial angle between the directions of the spin
and the effective magnetic field, Θ ≈ ε/|dϕ/dτ | ≈ 0.07.
To eliminate this initial angle we simulated the quantum
spin-cantilever dynamics for an adiabatic increase of the
rf field amplitude: ε = 20τ for τ ≤ 20, and ε = 400 for
τ > 20. Dependence for dϕ/dτ was taken the same as
in Figs. 4-7. The results of these simulations are quali-
tatively similar to those presented in Figs 2-4 , but the
integrated probability of the small peak was reduced to
its residual value ∼ 10−6.

We should also mention that the detection (without
measuring the state) of a single electron spin in an atom
can be used to determine the state of its nuclear spin
[23, 24]. Such a measurement is possible for an atom with
a large hyperfine interaction in a high external magnetic
field, because the electron spin frequency of the atom
depends on the state of its nuclear spin.

Certainly, for any single spin measurement the ampli-
tude of the driven cantilever vibrations must be greater
than the amplitude of the thermo-mechanical noise. The
amplitude of the driven cantilever vibrations for a single-
spin detection can be estimated as ηQcZc. The ampli-
tude of the thermo-mechanical noise is presented, for ex-
ample, in [14],

Zrms = 2[kBTQc∆f/kcωc]1/2,

where ∆f is the noise bandwidth. Thus, the minimum
value of η for a single-spin measurement can be estimated
as,

ηmin ∼ ω−1(kBT∆f/�Qc)1/2.

As an example, for the ultrathin cantilever reported in
[25], with parameters,

∆f = 0.4Hz, ωc/2π = 1.7kHz,

Qc = 6700, kc = 6.5 × 10−6N/m,

the value of ηmin is,

ηmin ∼ 0.3
√
T .

For an electron spin this value corresponds to the mag-
netic field gradient (in tesla per meter),

(∂B/∂Z)min = 2ηmin(kc�ωc)1/2/gµ ∼ 9 × 104
√
T ,

which is used in current experiments [26]. (Note, that
a detection of a single spin is connected with the driven
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vibrations of the cantilever, and does not depend on the
specific initial conditions on the moment of “turning on”
the rotating magnetic field.)

The real problem of a single-spin detection is associ-
ated rather with the short spin relaxation time at the
close distance of the cantilever from the measured spin
[26]. In our estimation we assume that the spin relax-
ation time is greater than the time constant, tc, of the
cantilever. (For a cantilever reported in [25] this time
is, tc = Qc/ωc ≈ 0.6s.) This problem is waiting for its
solution.

We would like to emphasize that in this paper we
did not discuss the exciting opportunity to detect a
Schrödinger-cat state for a quasi-classical cantilever. In-
deed, the decoherence time for such a state is very short.
Following [27] the decoherence time, td, for a cantilever
reported in [25] can be estimated as,

td/tc ∼ ωc

kckBT
(�/Zrms)2 =

(�ωc/2kBT )2(ωc/Qc∆f) ≈ 7 × 10−15/T 2.

Thus, for such “macroscopic” parameters, the
Schrödinger-cat state quickly transforms to a sta-
tistical mixture [30, 31] of two spin states relatively to
the directions of the effective magnetic field.

SUMMARY

In conclusion, we have analyzed the quantum effects in
the single-spin measurement using cyclic adiabatic inver-
sion (CAI) to drive cantilever vibrations in magnetic res-
onance force microscopy (MRFM). We investigated the
quasi-classical cantilever interacting with a single spin us-
ing Hamiltonian approach. We have shown that the spin-
cantilever dynamics generates two asymmetric peaks in
the probability distribution of the cantilever coordinate
corresponding approximately to the directions of the spin
along or opposite to the direction of the effective mag-
netic field in the rotating frame.

We also have demonstrated that, in the regime of
MRFM CAI, the cantilever measures the spin projec-
tion along the direction of the oscillating effective field
in the rotating reference frame. When the components
A and ϕ̇ of the effective magnetic field in Eqs.(20) and
(24), that are responsible for CAI, are small in compari-
son with the effective field η|z| (and, correspondingly, the
conditions of CAI are violated) one will have a transition
to the standard Stern-Gerlach experiment. Namely, the
Hamiltonian (7) will be reduced to

H = (p2
z + z2)/2 − 2ηzSz, (27)

which has been considered in Ref.[28]. (Note that the
model (27) can be considered as a modified Jaynes-
Cummings model, see [29].) In this limit, the cantilever
measures the projection of the spin in the direction of the
magnetic field (z-direction). So, one can conclude that,
depending on the system parameters, a cantilever is a
device which measures the projection of the spin either
in the direction of the oscillating effective field (MRFM
CAI) or in the z-direction (Stern-Gerlach effect).

In this paper, we did not discuss the intriguing possi-
bility of observing a Schrödinger cat state. Instead, we
concentrated on a possibility of observing the resonant
excitation of the cantilever vibrations, driven by a single
spin. We demonstrated by a direct computation of the
average cantilever position and its standard deviation as
a function of time that the resonant amplification of the
cantilever oscillations is indeed possible (for considered
region of the system parameters), despite the presence
of the two peaks for the cantilever distribution function.
In fact, the standard deviation of the cantilever coor-
dinate becomes large only when the angle between the
initial spin direction and the effective magnetic field ap-
proaches π/2. In this case both peaks are approximately
of equals size. However, after an observation of the can-
tilever position, the system appears in one of the peaks,
and the following evolution of the cantilever coordinate
shows again the resonant amplifications with a very small
standard deviation.

The interaction of the cantilever with an environment
will not change our main conclusion. Such an interaction
will cause the decoherence[30, 31], which transforms the
linear superposition of the cantilever states into a statis-
tical mixture. It is clear that this effect as well as the
thermal vibrations of the cantilever, cannot prevent an
observation of the driven oscillations of the cantilever if
the corresponding rms amplitude exceeds the amplitude
of the vibrational noise. Another effect of the interaction
with the environment is the finite quality factor, Qc, of
the cantilever, which puts the limit on the increase of
the cantilever vibrations. The stationary amplitude of
the cantilever vibrations can be estimated in our Hamil-
tonian approach by putting τ = Qc.

Finally, we mention two other possible techniques for
the cyclic spin inversion in MRFM. One of them is the
standard Rabi technique. This assumes that in our nota-
tion dϕ/dτ = 0, and ε = 1, i.e. the Rabi frequency equals
to the cantilever frequency. This technique seems to be
simpler than the CAI MRFM. But the amplitude of the
rf field, ε, must be much greater than the effective field
produced by the cantilever on the spin 2ηz � ε = 1. In
this case, the force acting on the cantilever is very small,
and the amplification of the driven cantilever vibrations
requires a long time, i.e. a large cantilever quality fac-
tor. Another technique assumes the application of short
π-pulses which periodically change the direction of the
spin in the time-interval, which is very short in compar-
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ison to the cantilever period [14]. If the time interval
between successive pulses equals half of the cantilever
period, this technique provides a resonant amplification
of the cantilever vibrations. Testing this technique in
MRFM experiments is a challenging problem. Our re-
sults on numerical simulations of “short-pulsed” MRFM
technique will be published elsewhere.
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[5] S.L. Braunstein (Editor), Quantum Computing, Wiley-
VCH, 1999.

[6] C.P. Williams, S.H. Clearwater, Computing at the Quan-
tum Frontier, Copernicus, An imprint of Springer-Verlag,
2000.

[7] G.P. Berman, G.D. Doolen, V.I. Tsifrinovich, Superlat-
tices and Microstructures, 27, 89 (2000).

[8] B.E. Kane, Nature, 393, 133 (1998).
[9] G.P. Berman, G.D. Doolen, P.C. Hammel, V.I.

Tsifrinovich. Phys. Rev. B, 61, 14694 (2000).

[10] G.P. Berman, G.D. Doolen, D.D. Holm, V.I. Tsifrinovich,
Phys. Lett. A, 193, 444 (1994).

[11] D. Loss, D.P. DiVincenzo, Phys. Rev. A., 57, 120 (1998).
[12] R. Vrijen, E. Yablonovich, K. Wang, H.W. Jiang, A. Ba-

landin, V. Roychowdhury, T. Mor, D. DiVincenzo, quant-
ph/9905096 v2, 1999.

[13] D. Loss, G. Burkard, E.V. Sukhorukov, cond-
mat/9907133.

[14] G.P. Berman, V.I. Tsifrinovich, Phys. Rev. B., 61, 3524
(2000).

[15] J.A. Sidles, Appl. Phys. Lett., 58, 2854 (1991).
[16] D. Rugar, C.S. Yannoni, J.A. Sidles, Nature, 360, 563

(1992).
[17] Z. Zhang, P.C. Hammel, P.E. Wigen, Appl. Phys. Lett.,

68, 2005 (1996).
[18] D. Rugar, O. Züger, S. Hoen, C.S. Yannoni, H.M. Vieth,

R.D. Kendrick. Science, 264, 1560 (1994).
[19] D. Rugar, B.C. Stipe, H.J. Mamin, C.S. Yannoni, T.D.

Stone, K.Y. Yasumura, T.W. Kenny, App. Phys. A, 72
[Suppl.], S3 (2001).

[20] S.A. Gurvitz, Phys. Rev. B, 56, 15215 (1997).
[21] A.N. Korotkov, quant-ph/9807051.
[22] P.M. Morse, Vibration and Sound (McGraw-Hill, New

York, 1948), p. 159.
[23] G.P. Berman, G.D. Doolen, P.C. Hammel, and V.I.

Tsifrinovich, Phys. Rev. B, 61, 14694 (2000).
[24] G.P. Berman, G.D. Doolen, P.C. Hammel, V.I.

Tsifrinovich, Phys. Rev. Lett., 86, 2894 (2001).
[25] T.D. Stowe, K. Yasumura, T.W. Kenny, D. Botkin, K.

Wago, and D. Rugar, Applied Phys. Lett., 71, 288 (1997).
[26] B.C. Stipe, H.J. Mamin, T.D. Stowe, T.W. Kenny, D.

Rugar, Phys. Rev. Lett., 87, 6801 (2001).
[27] G.P. Berman, G.D. Doolen, P.C. Hammel, V.I.

Tsifrinovich, Phys. Rev. A, 65, 032311 (2002).
[28] G.P. Berman, F. Borgonovi, G.V.Lopez, and V.I.

Tsifrinovich, quant-ph/0210006.
[29] E.T.Jaynes and F.W.Cummings, Proc. IEEE 51, 89

(1963).
[30] A.O. Caldeira and A.J. Leggett, Phys. Rev. A, 31, 1059

(1985).
[31] W.H. Zurek, Physics Today, 44, 36 (1991).


